
1

StenBOT Robot Kit

Stensat Group LLC, Copyright 2016

2

Legal Stuff

● Stensat Group LLC assumes no responsibility and/or liability for the use of
the kit and documentation.

● There is a 90 day warranty for the Quad-Bot kit against component defects.
Damage caused by the user or owner is not covered.

● Warranty does not cover such things as over tightening nuts on
standoffs to the point of breaking off the standoff threads, breaking wires
off the motors, causing shorts to damage components, powering the
motor driver backwards, plugging the power input into an AC outlet,
applying more than 9 volts to the power input, dropping the kit, kicking
the kit, throwing the kit in fits of rage, unforeseen damage caused by the
user/owner or any other method of destruction.

● If you do cause damage, we can sell you replacement parts or you can get
most replacement parts from online hardware distributors.

● This document can be copied and printed and used by individuals who
bought the kit, classroom use, summer camp use, and anywhere the kit is
used. Stealing and using this document for profit is not allowed.

● If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

3

References

● www.arduino.cc

● http://esp8266.github.io/Arduino/versions/2.1.0/doc/reference.html

http://www.arduino.cc/
http://esp8266.github.io/Arduino/versions/2.1.0/doc/reference.html

 44

Introduction

● In this lesson, you will learn how to control the robot motion over WiFi.

● This will require writing an arduino program and a processing program.

● Review the WiFi lesson from the SLATE.

 55

System Architecture

● This drawing shows how everything
is interconnected.

● The control program runs on the
laptop.

● The laptop wifi connects to the robot
wifi.

● The control program sends
commands over the wifi to the robot.

● The arduino program on the robot
interprets the commands and
executes them.

● The arduino program on the robot
also sends telemetry over the wifi to
the control program on the laptop.

Control
Program

Arduino
robot

Program

wireless link

 66

What is the Plan

● In this lesson, you will learn how to program the robot to set up the WiFi as
an access point and receive commands to move from your computer.

 77

Wifi Configuration

● First thing to do is include
the ESP8266WiFi library by
adding the include statement
to the top of the program.

#include <ESP8266WiFi.h>

 88

Wifi Configuration

● Some items need to be
declared.

● A WiFiClient object needs to
be created. This allows the
code to get commands from
the laptop and send
telemetry.

● WiFiServer object needs to
be created so the laptop can
connect and and send data
to the robot. This allows the
robot to receive connections.

● When creating the
WiFiServer object, the
network port is selected.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

 99

Wifi Configuration

● A character array is created for
holding the commands sent by the
laptop.

● For now, the first character in the
array will be the command.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

unsigned char cmd[6];

 1010

Wifi Configuration

● In the setup() function, the digital pins
controlling the motors is initialized to be
all outputs.

● The WiFi is set up as an access point.
WiFi.softAP() will set up the robot as an
access point with the SSID specified. If a
password is desired then the format is:

● WiFi.softAP(“ssid”,”password”);

● After the access point is configured, the
server is started. This implements the
ability for clients to connect to the robot.

void setup()
{
 Serial.begin(9600);
 pinMode(13,OUTPUT);
 pinMode(14,OUTPUT);
 pinMode(15,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.softAP(“robotname”);
 server.begin();
}

 1111

Controlling the robot

● Commands are needed to control the
motion of the robot.

● A unique byte value is required to
differentiate the motions.

● The table to the right shows the commands
for the motions. A single letter will represent
each motion.

Action Command

Halt S

Forward F

Reverse B

Left L

Right R

 1212

Receiving Commands

● In the loop() function, two things
need to be checked.

● Has a client connected to the
robot?

● Has a command been
received?

● One big rule about writing code.
No infinite loops in the loop()
function.

 1313

loop() Function

● In the loop() function, the first
thing that is checked is if a client
is connected to the robot.

● The object client is assigned to a
client that has connected. If no
client has connected then the
client object is empty or null.

● The if() statement checks if the
client object is null or not. The
result of the if() statement is
always true if the variable is not
empty or null.

● If a client has connected. the
statement Connected will be
displayed on the serial monitor.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 }
}

 1414

loop() Function

● A while() loop is created to
process all commands while the
client is connected. As long as
the result of client.connected()
is true, the code inside the
while() loop will be executed.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 }
 }
}

 1515

loop() Function

● The next highlighted line is
where the code is looking for any
commands sent to the robot. It
works the same as
Serial.available().

● The while() loop here executes
as long as there is no
commands being sent. It does
two things. First, it checks to
make sure a client is still
connected otherwise the while()
loop will get stuck forever.
Second, a delay() function is
executed. This allows the
processor to multi-task and
handle WiFi operations.

● If the client disconnects, the
break causes the code to exit
the the while() loop.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 }
 }
}

 1616

loop() Function

● After a command has been
received, the code exits the
while loop and then the
command byte is read.

● Reading a byte from the client is
the same as reading a byte from
the serial interface.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 char a = client.read();
 }
 }
}

 1717

loop() Function

● The command is then checked
in the switch() statement.

● The switch() statement allows a
variable to be tested against a
list of values. If the variable
matches the value to the right of
the case statement, the code to
the right of the colon is
executed.

● A break statement is used to exit
the switch() statement. If the
break is not included, the
processor would continue
executing the rest of the code in
the switch() statement.

loop() {
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {
 while(!client.available()) {

if(!client.connected()) break;
 delay(1);

 }
 char a = client.read();
 switch(a) {
 case 'F' : forward();

break;
case 'B' : reverse();

break;
case 'L' : left();

break;
case 'R' : right();

break;
case 'S' : halt();

break;
 }
 }
}

 1818

Remote Control Software

● Upload the code to the robot.

● With the robot software completed, it is time to write a program on the laptop
to provide the control.

● Processing software will be used.

 1919

Software Development Sequence

● The program to be written will allow the
robot to be controlled with the arrow
keys on the keyboard.

● The program must detect when an arrow
key is pressed and when it is released.

● When the key is pressed, a command
will be sent to the robot. When the key is
released, the stop command will be sent.

Key pressed?

Determine
Which Key

Pressed
Send

Forward
Command

Send
Reverse

Command Send
Left

Command

Send
Right

Command

UP

DOWN

LE
F

T

R
IG

H
T

Key
Released?

Send
Stop

Command

 2020

Importing Libraries

● Start the Processing software.

● Click on the Sketch menu and select
the Import Library

● Select the network library.

● The import command will appear at
the top of the editor. This tells the
compiler to include the library of
functions to support network
operations. This library will be used to
access the robot over wifi.

import processing.net.*;

 2121

Setting up a TCP Port

● The next step is to create a network
object that will provide access to the
wifi.

import processing.net.*;

Client c;

 2222

Setting up a TCP Port

● In the setup() function, the network
object is configured to talk to the
robot at the IP address of
192.168.4.1 using port 80.

● A window of 800 by 600 pixels is also
created.

import processing.net.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

 2323

Detecting the Keys

● To detect the keys, two event
functions will be used.

● keyPressed() and
keyReleased()

● keyPressed() is executed
when a key on the keyboard is
pressed.

● keyCode is a system defined
variable that tells you what key
was pressed.

● The arrow keys have names
in upper case to make it
easier to use.

import processing.net.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

 2424

Detecting the Keys

● Notice that the network object
c has a function called write().
This sends what is in quotes to
the robot over wifi.

● For this to work, Processing
requires the function draw() to
exist even if there is no code
in the function.

import processing.network.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

void draw()
{
}

 2525

Detecting Key Release

● The code can now send
commands to control the
motion of the robot. What is
missing is a way to stop the
motion of the robot.

● The keyRelease() function
is executed when a key is
released.

● The only thing the function
needs to do is send the stop
command to the robot. A
single c.write() function is
used. The first argument has
the S command. Remember
the robot commands are
terminated with a linefeed.

import processing.network.*;

Client c;

void setup()
{
 size(800,600);
 c = new Client(this,”192.168.4.1”,80);
}

void keyPressed()
{
 if(keyCode == UP) c.write(“F”);
 else if(keyCode == LEFT) c.write(“L”);
 else if(keyCode == RIGHT) c.write(“R”);
 else if(keyCode == DOWN) c.write(“B”);
}

void keyReleased()
{
 c.write(“S”);
}

void draw()
{
}

 2626

Test Drive

● Now that the program is completed, it is time to test it.

● Turn on the robot.

● On the laptop, select the network icon to find available WiFi access points.

● Connect the laptop to the robot WiFi network.

● Start the program in Processing.

● Press the arrow keys and watch the robot move around.

● When the program starts, a window will open. This is the program running. If
needed, click on the window to make it active.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

