

Lift Robot

Programming

Introduction

● There is a cycle to programming the
processor board.

● First, you write code using instructions
people can read which is called a
programming language.

● Next, the code gets compiled which
translates what you typed to machine
code that the computer understands.

● Lastly, the code is executed by the
computer.

● If there is an error, you change you code
and start the process over.

Enter Code

Execute

Compile

Introduction

● The base plate is the
processor board.

● It includes a WiFi processor,
motor driver, LEDs and
speaker.

● Uploading code is through
the USB interface.

● The power control allows the
USB interface to power the
electronics but not the
motors. Only batteries can
power the motors.

WiFi Processor

Motor Driver

USB Interface

Power Control

LEDs

Speaker

Introduction

● On board are pin
connectors. The allow
jumpers to be used to
connect the various
components on the base
plate.

● Shown up close are the
digital pins. These pins can
control motors, LEDs and
the speaker.

● The column marked SIGNAL
is what will be used.

Digital Pin

● Digital pins work similar to a switch. The digital pin can be turned on or off. In
a computer, the digital pin is set high or low which is equivalent to to be
turned on or off.

● When set high, the pin will be set to 3.3 volts.

● When set low, the pin will be set to 0 volts.

6

Software

● Now that the processor features have been covered, it is time to learn about
programming it.

● The processor uses the arduino software. This software allows you to write
programs, compile them and upload them to the processor. It also allows you to
interact with the software running on the processor.

● Only one program can be installed and run at a time. The processor is small and
does not have an operating system.

● Embedded computers are designed to perform a specific task and not operate
like a desktop computer or laptop.

● More information about the arduino software can be found at

● www.arduino.cc

7

USB Cable

How Things Work

● The Arduino software on the laptop is where
you write code and compile it. The compiling
translates your written code into machine
code that is executed on the rover.

● The robot has the processor board that
executes the code you wrote. When you
upload the code, the Arduino software in the
laptop sends the program over the USB
cable to the rover to be executed on the
rover.

● The program you write runs on the rover
processor.

8

Loading and Configuring Arduino Software

● Download the proper version of the Arduino software from www.arduino.cc

● Once downloaded and installed, run the program.

● Under the “File” menu, select “Preferences”

● Find the text entry space to the right of “Additional Board Manager URLS:

● Enter the following into the text area

● http://arduino.esp8266.com/stable/package_esp8266com_index.json

● Click OK.

● Select the menu “Tools” and then “Boards:” and then “Boards Manager”.

● A window will open. Scroll down until “esp8266” is located. Click on it and click Install.

● The software will load the compiler for the processor board.

9

Configuring the Software
● Select the “Tools” menu again and then

“Board:”.

● Select “Generic ESP8266 Module”

● Go back to “Tools” menu and select “Reset
Method”. Select “nodemcu”

● Nothing else needs to be changed. This
completes setting up for the processor board.

● To the right is a representation of the Tools
Menu. All selections should look like it. Only
the Port: selection may be different.

● On the next page, you configure the COM port.

Auto Format
Archive Sketch
Fix Encoding & Reload
Serial Monitor
Serial Plotter

Board: “Generic ESP8266 Module”
Flash Mode: “QIO”
Flash Size: “512K (64K SPIFFS)”
Debug Port: “None”
Reset Method: “nodemcu”
Flash Frequency: “40MHz”
CPU Frequency: “80 MHz”
Upload Speed: “115200”
Port: “COM3”

Programmer: “AVRISP mkII”
Burn Bootloader

Auto Format
Archive Sketch
Fix Encoding & Reload
Serial Monitor
Serial Plotter

Board: “Generic ESP8266 Module”
Flash Mode: “QIO”
Flash Size: “512K (64K SPIFFS)”
Debug Port: “None”
Reset Method: “nodemcu”
Flash Frequency: “40MHz”
CPU Frequency: “80 MHz”
Upload Speed: “115200”
Port: “COM3”

Programmer: “AVRISP mkII”
Burn Bootloader

10

Configuring Arduino Software

● Plug the processor board into the computer USB port

● Let the operating system find the drivers. (network connection required)

● The driver is also included with arduino software
● In the arduino program select menu “Tools”

● Select “serial Port”

● Select the appropriate COM port.

● If you have a modem built in or existing COM ports, the COM number for the
processor will usually be the highest number.

● On a Mac, the port is not a bluetooth device.

11

Arduino Software
● This is the arduino software.

● The software will let you enter programs and
upload the code to the processor board.

● The programming language is C and C++.

● The large white area is where the code is
entered.

● The black area below is where error
messages will be displayed such as when
there is an error in the code or the software
cannot upload code for some reason.

Area for entering code

error message area

12

Arduino Software
● The buttons below the menu have

different functions.

● The first called Verify Code will
compile the code and check for
errors but not upload the code.

● The next button will do the same as
the first but also upload the code.

● New Program button opens a new
copy of the program allowing you to
start writing another program.

● Open and Save are for opening and
saving the code you have written.

Verify
Code

Upload
Code

New
Program

Open
Save

13

Arduino Software
● Serial Monitor button opens a new

window allowing you to interact with
the processor.

● The Serial Monitor window allows the
processor to display information and
you to send information.

● This will be used quite a bit in this
section.

Serial
Monitor

14

First Program
● Enter the program in the editor on the right. Do not

copy and paste from the pdf file. It doesn't work.
The compiler is case sensitive so pay attention to
capitalized letters.

● Plug the processor board into the USB port.

● Click on the upload Code button to compile and
upload the program.

● When the status message at the bottom of the
window says done uploading, click on the serial
monitor button.

● The Serial Monitor window pops up with the message
being displayed. In the lower right of the window,
change 9600 baud to 115200 baud.

● Save your program. Pick a file name.

void setup()
{

Serial.begin(115200);
}

void loop()
{

Serial.print(“Hello World”);
}

Serial Monitor Window

15

Functions
● A function is basically a set of instructions

grouped together. A function is created to
perform a specific task.

● The set of instructions for a function are
bounded by the curly brackets as seen to
the right.

● The setup() function is used to initialize
the processor board, variables, and
devices.

● Inside functions, you can call other
functions. Serial.begin() is a
function. It is located somewhere else in
the arduino software.

void setup()
{

Serial.begin(115200);
}

void loop()
{

Serial.print(“Hello World”);
}

16

Syntax Requirements
● You will notice that some lines end

with a semi-colon. This is used to
identify the end of an instruction. An
instruction can be an equation or
function call.

● When you create a function such as
setup(), you do not need a semi-
colon.

void setup()
{

Serial.begin(115200);
}

void loop()
{

Serial.print(“Hello World”);
}

17

Programming Basics
● The program is made up of two functions.

● setup() function is run at reset, power
up or after code upload only once.

● It is used to initialize all the needed
interfaces and any parameters.

● loop() function is run after the setup()
function and is repeatedly run hence the
name loop.

● This program configures the serial
interface to send messages at 115200
bits per second.

● The message is “Hello World” and is
repeatedly displayed.

● Serial.begin() is a function that intializes the serial
interface and sets the bit rate.

● Serial.println() sends the specified message
over the serial interface and move the cursor to down
one line.

● delay(500) is a command to stop the program for
500 milliseconds.

void setup()
{

Serial.begin(115200);
}

void loop()
{

Serial.print(“Hello World”);
delay(500);

}

18

Programming Basics
● In the setup() function, it executes the

function Serial.begin(115200);

● This function initializes the UART which is
connected to the USB port to allow for
communications.

● In the loop() function, it executes the function
Serial.print(“Hello world”);

● This function send the text in quotes to the
UART. This is displayed in the Serial Monitor
window.

● The other function is called delay().

● This function stops the program for a specified
period of time. The unit is in milliseconds. The
code to the write displays the text every half
second.

void setup()
{

Serial.begin(115200);
}

void loop()
{

Serial.print(“Hello World”);
delay(500);

}

19

Programming Basics
● In the Serial Monitor window, you may

have noticed that the text displayed
scrolls to the right. That is just how
Serial.print() works.

● To have the text displayed on its own line,
change the Serial.print() to Serial.println().

● Serial.println() adds a line feed which
forces the text in the Serial Monitor to
move down one line.

● Make the change, upload the code and
open the Serial Monitor window.

void setup()
{

Serial.begin(115200);
}

void loop()
{

Serial.print(“Hello World”);
delay(500);

}

20

Variables

● Variables are used to store information. There will be three different types
variables used for the robotic arm:

– int which store integer values also known as whole numbers

– float which store fractional values, decimal numbers

– char which store bytes.

21

Variables
● Variables can have any name as long

as it starts with a letter. It can contain
all the letters in upper and lower case,
numbers and _.

● No other characters are allowed.

● The C/C++ language is case sensitive
meaning that a variable of the same
name but different case letters are
different variables.

● variable dog is a different variable than
Dog.

int a;
float pulse;
char buf;

22

Variables
● Math operations can be performed on

variables.

● Integers and float variables use the
same symbols for the math operations.

● Float values and integers can be mixed
in equations. Just be careful as the
results may not always be as expected.

● To be safe, integers can be type case to
float by inserting (float) in front of the
variable. Floats can be converted to
integers by inserting (int) in front the
variable.

int a,b;

float p1,p2;

a = 45; // assign a value
b = a + 32; // add two numbers
b = a – 98; // subtract two numbers
a = b * a; // multiply
b = 18342 / a; // divide
p1 = 43.6;
p2 = p1 * 3.14159;
p2 = p1 * a;
p2 = (float)a / p1; // convert int

23

Conditional Statements
● Programs are limited if there is no ability

to make decisions.

● The if() statement is used to determine
how programs function.

● The program to the right creates and
assigns values to two variables.

● The if() statement has a comparison
inside the parentheses. If the comparison
is true, the code in the brackets right
after is executed. If not, the code in the
brackets after else is executed.

● Change the variable values and run the
program.

void setup() {
 Serial.begin();
}

void loop() {
 int a = 45;
 int b = 32;
 if(a > b) {
 Serial.println(“A is greater”);
 } else {
 Serial.println(“B is greater”);

24

Conditional Statements
● Listed to the right are the different

types of comparisons.

● The comparisons work for both
integer and float type variables.

int a,b;

a == b equals
a < b less than
a > b greater than
a <= b less than or equal
a >= b greater than or equal
a != b not equal

25

LED Control

● Take a jumper wire and put one
end onto digital pin 12.

● Put the other end of the jumper
onto the Red LED pin.

● It does not matter which color
jumper is used.

26

LED Control

● Start a new program in the Arduino IDE.

● Enter the code as shown.

● In the setup() function, the pinMode() function
configures the digital pin 12 to be an output. This will
allow the pin to turn on and off or go high and low.

● In the loop() function, the digital pin is set high and
low repeatedly using the digitalWrite() function. A
half second delay is inserted between turning the
LED on and off.

● Upload the code and give the program the name
blinky when asked. After the code uploads, the LED
should start blinking.

void setup() {
 pinMode(12,OUTPUT);
}

void loop() {
 digitalWrite(12,HIGH);
 delay(500);
 digitalWrite(12,LOW);
 delay(500);
}

27

LED Control

● Connect the green LED to digital pin 13.

● Modify the code to have digital pin 13 blink the
green LED opposite to the red LED. When the
red LED is on, the green LED is off. When the red
LED is off, the green LED is on.

● What did you have to do to the program to make
this happen?

void setup() {
 pinMode(12,OUTPUT);
}

void loop() {
 digitalWrite(12,HIGH);
 delay(500);
 digitalWrite(12,LOW);
 delay(500);
}

28

Speaker

● Connect a jumper wire from digital
pin 4 to the speaker.

● The speaker is a device that
makes sound when a signal is
toggled high and low quickly.

● There is a function that does this
called tone(). Tone requires two
parameters, the digital pin number
and the frequency in Hertz or Hz.

29

Speaker

● Try this program. It toggles between
two tones like the last program that
toggles between the two LEDs.

● The first tone() function will cause the
digital pin 4 to toggle between 3.3
volts and 0 volts 2000 times a second
or at a frequency of 2000 Hz.

● The second tone() function will toggle
the pin at a frequency of 1500 Hz.

● The frequency range allowed is 30 Hz
to 20000 Hz.

void setup() {
 pinMode(4,OUTPUT);
}

void loop() {
 tone(4,2000);
 delay(500);
 tone(4,1500);
 delay(500);
}

30

Speaker

● Musical notes are just different frequencies. A
middle C note has a frequency of about 261 Hz.

● Open a new program and enter the code to the
right.

● The #define statement assigns a value to a
name. The #define statements in this program
assign frequency numbers to the musical notes.

● Try the program and replace the notes in the loop
to see how the define statements make
programming easier.

#define C 261
#define D 294
#define E 329
#define F 349
#define G 392
#define A 440
#define B 493
#define C2 523

void setup() {
 pinMode(4,OUTPUT);
}

void loop() {
 tone(4,C);
 delay(500);
 tone(4,C2);
 delay(500);
}

31

Speaker

● Music can be played similar to musical
greeting cards and other toys that play
simple tunes.

● Shown to the right is the top part of the
program.

● Add another #define statement which
identifies the number of notes in the song.

● Below that are two arrays of data. The note
array contains the notes of the song and the
dur array contains the length of the note. 4 is
quarter note and 1 is a whole note.

#define C 261
#define D 294
#define E 329
#define F 349
#define G 392
#define A 440
#define B 493
#define C2 523
#define p 7

int note[p] = {C,C,G,G,A,A,G};
int dur[p] = {4,4,4,4,4,4,1};

32

Speaker

● The loop() function gets rewritten. The setup()
function stays the same.

● The for() loop lets a program cycle through
specific code marked by the bold brackets for
some number of times. There are three parts of
the for() loop. The first part sets the start
condition which in this code declares variable i
and sets it to zero. The second part is a
comparison and as long as it is true, the for()
loop keeps executing. The third part modifies the
variable i which is incremented by 1.

● Once the comparison is not true, the for() loop
stops executing. This will be indicated by a 1
second pause in the music.

void setup() {
 pinMode(4,OUTPUT);
}

void loop() {
 for(int i = 0;i<p;i++) {
 int t = 1000/dur[i];
 tone(4,note[i]);
 delay(t);
 noTone(4);
 delay(20);
 }
 delay(1000);
}

33

Speaker

● The code in the for() loop creates another
variable t that calculates the duration of the
note. A whole note is 1 second long. A
quarter note has a value of 4 which divides
1000 ms to 250 ms or quarter second.

● dur[i] is the duration. The value of i is used
to select the duration of the note.

● tone(4,note[i]) generates the tone based on
the value of note[i]. The value of i selects
the current note.

● note[0] is the first note in the array. note[6]
is the last note in the array.

void setup() {
 pinMode(4,OUTPUT);
}

void loop() {
 for(int i = 0;i<p;i++) {
 int t = 1000/dur[i];
 tone(4,note[i]);
 delay(t);
 noTone(4);
 delay(20);
 }
 delay(1000);
}

34

Speaker

● After the note has played. the noTone(4)
function turns off the note being played.
delay(20) creates a 20 ms worth of silence
to help distinguish between the notes. This is
especially useful when the same note is
played more than once in sequence.

● Outside the for() loop is the one second
delay. This indicates the end of the song.
The program will repeat the music
continuously.

void setup() {
 pinMode(4,OUTPUT);
}

void loop() {
 for(int i = 0;i<p;i++) {
 int t = 1000/dur[i];
 tone(4,note[i]);
 delay(t);
 noTone(4);
 delay(20);
 }
 delay(1000);
}

35

End

● By the end of this section, you should have a basic understanding of writing
code and controlling devices such as LEDs and speakers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

