
Lift Robot

Motor Control

2

Motor Control

● Controlling the motors is the same as controlling the LED except two signals
are needed.

● With two signals, you can control the direction of the motors and turn them
on and off.

● The following pages will describe how to hook up the motors.

● A motor driver module is needed. This module allows a computer to control
the motors. The motors require more power than the computer signals can
provide so the module provides the power.

● The motor driver uses what is called an H-Bridge Driver.

3

Motor Control

● Dual H-Bridge Driver is
used to control the
motors. It uses four
transistors to control the
polarity of the voltage
supplied to the motor.
The transistors are
used as switches
turning on and off.
Below shows the H-
bridge driver circuit and
the current flows.

Motor Battery

+

-

+

-

4

Motor Control

● To make the motor turn on one
direction, two switches need to
be turned on to let power get to
the motor. One switch connects
the positive side of the battery
to to one side of the motor and
another switch connects the
negative side to the other side
of the motor.

Motor Battery

+

-

+

-

+-

5

Motor Control

● Flip all the switches to
the opposite position and
the motor turns in
reverse. Notice the
polarity signs on the
motor switched sides.

Motor Battery

+

-

+

-

+ -

6

Motor Controller

● The motor controller is the interface
between the motors and the processor
board. It has circuitry to allow control of
the motors and can handle the high
currents required to operate the motors.
The processor board cannot directly
power the motors. The controller is
capable of providing the needed current
and is used as the interface.

7

Motor Controller

● The motor controller module consists of two H-bridge
drivers to control two motors.

● The circuit side is shown at the top right. The square block
in the center contains the two motor drivers.

● The bottom picture shows the signal names next to the
pins.

● Power is supplied at pins GND and VCC.

● Control signals for each motor is IN1, IN2, and IN3, IN4.

● The motors connect to the pins marked OUT.

● The other pins are not used.

8

Motor Controller

● There are two signals that control the direction and operation. Control logic
decodes the two signals and turns on the appropriate switches to control the
motor. The drawing shows the condition of IN1 and IN2 set to logic low.

Control
Logic

Motor Battery

+

-

+

-

IN1=0

IN2=0

9

Motor Controller

● When IN1 is set to logic 1 and IN2 is set to logic 0, the motor drives in the forward
direction.

● You will notice that setting IN1 = 1, and IN2=0 turns on two signals that turn on the two
switches.

Control
Logic

Motor Battery

+

-

+

-

IN1=1

IN2=0

10

Motor Controller

● When IN2 is set to logic 1 and IN1 is set to logic 0, the motor drives in the reverse
direction.

● You will notice that setting IN1 = 0, and IN2=1 turns on two signals that turn on the
two switches.

Control
Logic

Motor Battery

+

-

+

-

IN1=0

IN2=1

11

Motor Controller

● When you set both IN1 and IN2 to logic 1, you get a breaking action.

● This turns on the two bottom switches which shorts the motor connections together.
The inductance created by the motor turning in one direction will power the motor to
turn in the opposite direction. It causes the motor to slow down quickly.

Control
Logic

Motor Battery

+

-

+

-

IN1=1

IN2=1

12

Motor Controller

● Remove all jumper wires that
may still be installed.

● Connect the motor driver as
shown.

● Connect digital port 16 to IN3.

● Connect digital port 15 to IN4.

● Connect digital port 14 to IN2.

● Connect digital port 13 to IN1.

13

Motor Controller

● Connect the motors to
the motor driver.

● The left motor
connects to OUT3
and OUT4.

● The right motor
connects to OUT1
and OUT2.

Left Motor

Right Motor

14

Motor Control

● Make sure the power switch is in the
off position.

● Insert 4 AA batteries into the battery
holder.

● Enter the code to the right. The code
will turn on the motors to spin the
wheels in the forward direction.

● If any of the wheels are spinning in
reverse, swap the two wires in the
corresponding OUT plug on the base
plate.

void setup()
{

pinMode(13,OUTPUT);
pinMode(14,OUTPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);

}

void loop()
{

digitalWrite(13,HIGH);
digitalWrite(14,LOW);
digitalWrite(15,HIGH);
digitalWrite(16,LOW);
delay(5000);
digitalWrite(13,LOW);
digitalWrite(15,LOW);
delay(2000);

}

15

Direction Control

● The digital pins D13 and D14 control the right motors.

– Setting D13 high and D14 low makes the right wheels spin forward.

– Setting D13 low and D14 high makes the right wheels spin reverse.

– Setting D13 low and D14 low turns off the motors.
● The digital pins D15 and D16 control the left motors.

– Setting D15 high and D16 low makes the left wheels spin forward.

– Setting D15 low and D16 high makes the left wheels spin reverse.

– Setting D15 low and D16 low turns off the motors.

● The next page shows the combination of digital pin settings for the direction of
motions.

16

Direction Control

Forward Motion
digitalWrite(13,HIGH);
digitalWrite(14,LOW);
digitalWrite(15,HIGH);
digitalWrite(16,LOW);

Reverse Motion
digitalWrite(13,LOW);
digitalWrite(14,HIGH);
digitalWrite(15,LOW);
digitalWrite(16,HIGH);

Halt
digitalWrite(13,LOW);
digitalWrite(14,LOW);
digitalWrite(15,LOW);
digitalWrite(16,LOW);

Right Turn
digitalWrite(13,LOW);
digitalWrite(4,HIGH);
digitalWrite(15,HIGH);
digitalWrite(16,LOW);

Left Turn
digitalWrite(13,HIGH);
digitalWrite(14,LOW);
digitalWrite(15,LOW);
digitalWrite(16,HIGH);

17

Direction Functions

● To make programming easier, functions will
be created to specify the motions of the robot.

● A function is a collection of instructions that
are grouped by braces { } and given a name.

● The format is shown to the right with one of
the motions.

● The code in the loop function can call the
forward function eliminating the need to
rewrite the digitalWrite() functions every
time.

● The motion functions should be inserted at
the top of all programs.

void forward()
{
 digitalWrite(13,HIGH);
 digitalWrite(14,LOW);
 digitalWrite(15,HIGH);
 digitalWrite(16,LOW);
}

18

Function File

● Start a new program with the Arduino program.

● Click on the down arrow to the right where circled
in red.

● A menu will open. Select “New Tab”

● Below, it will ask for a name. Enter motion

● Click 'OK'

● A new tab is created called 'motion'

● You will enter all the movement functions here.

● Enter the functions listed in the next page.

19

Motion Functions
void forward()
{
 digitalWrite(13,HIGH);
 digitalWrite(14,LOW);
 digitalWrite(15,HIGH);
 digitalWrite(16,LOW);
}

void reverse()
{
 digitalWrite(13,LOW);
 digitalWrite(14,HIGH);
 digitalWrite(15,LOW);
 digitalWrite(16,HIGH);
}
void halt()
{
 digitalWrite(13,LOW);
 digitalWrite(14,LOW);
 digitalWrite(15,LOW);
 digitalWrite(16,LOW);
}

void right()
{
 digitalWrite(13,LOW);
 digitalWrite(14,HIGH);
 digitalWrite(15,HIGH);
 digitalWrite(16,LOW);
}

void left()
{
 digitalWrite(13,HIGH);
 digitalWrite(14,LOW);
 digitalWrite(15,LOW);
 digitalWrite(16,HIGH);
}

20

Test Drive

● Click on the tab to the left of motion tab. Enter the
code to the right.

● The code to the right is a start.

● Notice the delay() function is included after
each motion function. This give the robot time to
perform that motion. The value included in the
delay function is time in milliseconds.

● Add directions to the program and change up the
delays. Come up with a complex set of motions.
Always remember to include a delay after the
function to move the robot.

● When complete save the sketch as “move”.
Remember this sketch. The motion file will be
reused.

void setup()
{

pinMode(13,OUTPUT);
pinMode(14,OUTPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);

}

void loop()
{
 forward();
 delay(1000);
 left();
 delay(400);
 reverse();
 delay(1000);
}

21

Experiment Time

● Now that you know the basics. Write a program to make the robot move in a
square pattern.

● Use the delay() function to control how long the robot turns and moves in a
straight direction.

22

Speed Control

● It may be noticed that the robot may tend to drift
to the left or right. This is due to the motors not
being equally powerful.

● There is a way to attempt to equalize them by
controlling their speed.

● A simple way to control the speed is to pulse
power to the motors. This technique is called
pulse width modulation.

● On the arduino, the analogWrite() function
performs this. It generates a repeating pulse at
about 490 Hz.

● The size of each pulse is the duty cycle. The
higher the duty cycle the more power the motor
gets.

● Adjusting the duty cycle will adjust the motor
speed.

23

analogWrite()

● The function analogWrite() function takes two values.

● First is the pin number.

● Second is the duty cycle represented as a value from 0 to 1023.

● 0 is 0% duty cycle.
● 1023 is 100% duty cycle.
● 511 is 50% duty cycle.
● The function is written as

● analogWrite(pin,duty);

24

Motor Speed Control

● Enter the program to the right. This program
generates a PWM signal to the motor. Only one side
needs a PWM signal. The other is set to 0 so no
PWM signal is present.

● The code sets the PWM signal to 1023 which is
100% duty cycle meaning it is on all the time. This is
the same as digitalWrite() function.

● Run the code and see which direction the robot drifts.

● Reduce the value for the opposite direction by 10 and
try again. Keep adjusting until the robot drives
relatively straight. It won't be perfect.

● The analogWrite() functions can replace the
digitalWrite() functions in the motion functions.

void setup()
{

pinMode(13,OUTPUT);
pinMode(14,OUTPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);

}

void loop()
{

analogWrite(13,1023);
analogWrite(14,0);
analogWrite(15,1023);
analogWrite(16,0);
delay(5000);
analogWrite(13,0);
analogWrite(15,0);
delay(2000);

}

25

Motor Speed Control Function

● Add this function to the motion tab after
all the other functions. This function
allows the rover to move forward and
gently curve left or right instead of
rotating in place with the right and left
commands.

● This function has two argument or
parameters that get passed to it, left
and right. These variables are set to
the values passed and used inside the
function only. They have a range of 0 to
1023.

● Create a function for reverse.

void sforward(int left, int right)
{

analogWrite(13,left);
analogWrite(14,0);
analogWrite(15,right);
analogWrite(16,0);

}

26

Motor Speed Control Function

● Back in the first tab, change the
program in the loop() function to
what is in the right.

● Upload the code and see what it
does.

● Modify the program to make the
robot move in large curves and
small curves.

● Modify the program to make the
robot move in a S pattern and
then in a circle.

void loop()
{

sforward(1000,1000);
delay(1000);
sforward(1000,600);
delay(1000);

}

27

Calibrating Travel

● Since there is no feedback on the motors to
detect distance or wheel rotation, time will be
used to specify the distance and the amount
of turning.

● Mark off two feet on the floor. Floor tile is
usually 1 foot square.

● Write a program to move forward two feet and
stop. Start with a delay of 1000 ms.

● Adjust the delay until the robot travels two
feet. Keep this value.

● If necessary, adjust the PWM values to keep
the robot as straight as possible.

2 Feet

Start

Stop

28

Calibrating Turns

● Now mark on the floor a right angle.
If the floor has tiles, use the corner
of a tile for your right angle.

● Program the robot to turn right and
set the delay to 400 ms and turn off.

● Place the robot on the corner of the
right angle facing the left line.

● See how much the robot turns and
adjust the delay until it turns 90
degrees.

● Verify the value turning left and
adjust if necessary.

Floor
Tile

29

Course Travel

● Now for the fun part. Modify and
expand the program to go through the
obstacle course shown below. The
large square represent 2 foot grids.

● This attempt through the course is
called dead reckoning. Write a
program to go through a sequence of
motions to reach the end of the
course. Adjust the delays between
each motion so the robot travels to the
finish line without going on off the
squares.

● Change the course and make it more
complex if you want.

S
ta

rt

Finish

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

