
Lift Robot

Interaction

2

Introduction

● This lesson will teach how to get python code to interact with the robot.

● You will be able to use the keyboard and create a simple graphical user
interface.

3

Turning LEDs on and Off

● The LEDs will be controlled with the keyboard. The robot code will listen for
commands through the USB interface from a python program.

● The python program will detect key presses on the keyboard and send
commands to turn on and off each LED.

● A new library is needed for python called pyserial.

● Open a power shell in Windows.

● Enter the command pip3 install pyserial and press the enter key.

● The library will be installed. Once completed, exit the power shell.

4

LED Control

● Connect the digital pins 4 and 5
to the two LEDs as shown.

● The red LED will be controlled
by pin 5. The green LED will be
controlled by pin 4.

● The LEDs will be controlled by
pressing keys on a keyboard.
The A key will turn on the red
LED. The S key will turn off the
red LED. The Q key will turn on
the green LED and the W key
will turn off the green LED.

5

Key Control

● Starting with the robot code, open
the Arduino program and start with
a new program.

● Enter the code to the right.

void setup() {
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

6

Key Control

● The setup() function should look
familiar. The serial interface which
interacts through the USB port is
initialized.

● The two digital pins connected to
the LEDs are set to output.

void setup() {
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

7

Key Control

● The first function in the the loop()
function checks is any data has been
sent.

● Serial.available() checks if any
command has been sent from the
python program. More than one can
occur so the comparison in the if()
statement is for any number greater
than zero. If a command was sent,
the code between the bold brackets
gets executed otherwise, nothing is
executed and the program checks
again.

void setup() {
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

8

Key Control

● When a command is received, the
next step is to get the command.

● Variable a is created and then
assigned the command value from
the serial interface.

void setup() {
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

9

Key Control

● The switch() statement is a
simplification of if() statements.
Instead of checking for each possible
value that variable a could be, the
switch() statement lists the possible
values and the instructions to
execute when the value matches the
variable value.

● The case statement has the value to
check to the right. For this program,
the code is looking for key presses
from the keyboard. What is received
is the letter of the key. This is with
the Caps Lock off. A single quote
indicates it is a letter.

void setup() {
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

10

Key Control

● After the colon, the code is executed
if the match is made. You can have
many lines of code.

● The break statement tells the code to
skip the rest and exit the switch()
statement. If break was not included,
all the code of the other case
statements would be executed below
where the case was executed.

● If ‘q’ was detected, the program
would execute at the case ‘q’ :
statement and continue on through
the case ‘w’ statement without a
break to stop the execution.

void setup() {
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

11

Key Control

● Upload the code in arduino to the
robot.

● Open the serial monitor. Make sure it
is configured as shown to the right.

● Set the bottom left tab to No line
ending.

● Make sure the baud rate is set to
115200.

● In the top part, enter the letter a and
press the enter key. The red LED
should have turned on. Try the other
letters.

Enter command here

Set this Set Baud Rate

12

Python Key Control

● Open the Python IDLE
program. In the file
menu, select New to
open a program editor.

● Enter the program to the
right.

import serial
import pygame

s = serial.Serial(“COM4”,115200)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.write(b‘a’)
 if event.type == pygame.K_s:
 s.write(b‘s’)
 if event.type == pygame.K_q:
 s.write(b‘q’)
 if event.type == pygame.K_w:
 s.write(b‘w’)

13

Python Key Control

● The first library imported is the
serial library. This allows the
python program to talk to the
robot through the USB port.

● Specify the same COM port
as the Arduino IDE uses to
upload code to the robot.

import serial
import pygame

s = serial.Serial(“COM4”,115200)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.write(b‘a’)
 if event.type == pygame.K_s:
 s.write(b‘s’)
 if event.type == pygame.K_q:
 s.write(b‘q’)
 if event.type == pygame.K_w:
 s.write(b‘w’)

14

Python Key Control

● The pygame library is
initialized the same as before
and a window is created with
the size of 800 pixels by 400
pixels.

import serial
import pygame

s = serial.Serial(“COM4”,115200)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.write(b‘a’)
 if event.type == pygame.K_s:
 s.write(b‘s’)
 if event.type == pygame.K_q:
 s.write(b‘q’)
 if event.type == pygame.K_w:
 s.write(b‘w’)

15

Python Key Control

● In the while loop, the checks
for events. The first type of
event checked is if the close
button on the window has
been clicked. If true, the
pygame library quits and the
program quits.

import serial
import pygame

s = serial.Serial(“COM4”,115200)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.write(b‘a’)
 if event.type == pygame.K_s:
 s.write(b‘s’)
 if event.type == pygame.K_q:
 s.write(b‘q’)
 if event.type == pygame.K_w:
 s.write(b‘w’)

16

Python Key Control

● The second event is detecting
the press of a key on the
keyboard. If true, then the
program checks which key
was pressed.

● pygame.K_a represents the A
key pressed with the Caps
Lock off and not pressing the
shift key. If you want to detect
the shifted A key, use
pygame.K_A.

import serial
import pygame

s = serial.Serial(“COM4”,115200)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.write(b‘a’)
 if event.type == pygame.K_s:
 s.write(b‘s’)
 if event.type == pygame.K_q:
 s.write(b‘q’)
 if event.type == pygame.K_w:
 s.write(b‘w’)

17

Python Key Control

● When the correct key is
pressed, the program will
send out the command which
is a single letter to the robot.

● Notice the syntax is b’a’. The
b in front tells python to use a
byte size character. Normally
python uses unicode to
identify letters which is 16-bits.
The serial library does not
support unicode.

import serial
import pygame

s = serial.Serial(“COM4”,115200)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.write(b‘a’)
 if event.type == pygame.K_s:
 s.write(b‘s’)
 if event.type == pygame.K_q:
 s.write(b‘q’)
 if event.type == pygame.K_w:
 s.write(b‘w’)

18

WiFi

● The wifi integrated in the processor provides a wireless way to communicate
with the processor. The processor will be configured as an access point.
This means it becomes a local network where your laptop connects. It is
also possible to have a tablet connect to the processor. In this lesson, you
will learn how to control digital pins. This will require you to write code on the
laptop.

19

WiFi

● WiFi is a local area wireless computer network. It is also known as wireless
local area network. WiFI is a standard for allowing computers to interact with
each other using radio signals. A wireless access point is a device that
connects a wireless network to a wired network. It can also provide a local
isolated network not connected to the internet or other wired network.
Access points usually have a network router and can provide network
addresses or IP addresses to any device that connects.

20

WiFi

● SSID – is a unique identifier for the WiFi network. It can have up to 32 characters and is case sensitive. This
allows multiple WiFi access points in the same area without interfering with each other.

● IP Address – is the internet protocol address assigned to each device on the network. There are two standards,
IP-4 and IP-6. IP-4 is used here. The address consists of four sets of numbers separated by a decimal point.
Each number has a range of 0 to 255. Example 192.168.1.10.

● DHCP – is Dynamic Host Configuration Protocol. This protocol allows a WiFi router to assign an IP address to
any device that connects to the WiFi network. This is done automatically.

● TCP – is Transmission Control Protocol. This is one of the main network protocols used by any device on any
WiFi network or the internet. The protocol enables two devices to establish a connection to each other and
exchange data. The protocol guarantees delivery of data and that the data is delivered in the same order sent.
The sender sends a data packet, when the receivers gets the packet, it sends an acknowledgment If the receiver
doesn’t receive the packet, the sender will send again after a time out period.

● UDP – is user datagram Protocol. This protocol is a stateless protocol. No connection needs to be made and
packets received are not acknowledged. The sender just sends a packet to an IP address and port. There is no
guaranteere the receiver actually received any packets. Data packets can be sent much more quickly because
there is no handshaking.

21

WiFi

● There are two parts to the WIFI operation. Configuration which sets up the
module to operate properly. Data operation where the module receives data
and can send data. The WIFI module will be configured to operate as an
access point. This allows another computer to connect to the module and
communicate with the module. More than one WIFI access point can be in
the same area and operate independent of each other as long as their SSID
are different. In this lesson, the WIFI module will be configured as an access
point and allow TCP connections.

22

WiFi TCP

● This section will show how to wirelessly control the LEDs using TCP
packets.

● This requires the python program to connect to the robot.

● The robot will operate as an access point so the computer running python
must connect its WiFi to the robot access point.

23

WiFi TCP

● The first half of the Arduino program is
shown to the right. You can modify the
existing LED control program.

● The first line imports the WiFi library.

● The second line declares a client object. This
is used to talk with the python program.

● The third line creates a server object that
listens for clients on port 80.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

void setup()
{
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 server.begin();
}

24

WiFi TCP

● In the setup() function, after setting up the
serial interface and the digital pins, the WiFi
is set to access point mode.

● Then the access point is turned on with the
WiFi.softAP() function. The parameter in
quotes is the SSID. Create your own.

● The last line activates the server so
connections can be established.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

void setup()
{
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 server.begin();
}

25

WiFi TCP

● In the loop() function, the first
thing done is to see if a client has
connected to the robot. That is
done with the first two lines.

● First, client is assigned a value
from server.available(). If no
clients connected, then the value
is zero. If there is a connection,
then the value is not zero.

● The if() statement is true when
the value is not zero. If a client
did connect, the code within the
if() statement is executed.

void loop() {
 client = server.available();
 if(client) {
 while(client.connected()) {
 while(!client.available()) {
 if(!client.connected()) break;
 delay(1);
 }
 int a = client.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
 }
}

26

WiFi TCP

● The next part is the while() loop.
This is required since the client
will stay connected for a while.
The while() loop checks if the
client is still connected. As long
as the client is still connected,
the code within the brackets gets
executed.

void loop() {
 client = server.available();
 if(client) {
 while(client.connected()) {
 while(!client.available()) {
 if(!client.connected()) break;
 delay(1);
 }
 int a = client.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
 }
}

27

WiFi TCP

● The next while() loop checks if
any packets are received from
the client. As long as no packets
are received, the while() loop
executes. Inside that while()
loop, it checks to make sure the
connection is still valid. If not, the
program breaks out of the
while() loop. Then the program
has a 1 ms delay. This is needed
so the system can service the
WiFi. If it was not included, the
program would crash. It’s how
the software works.

void loop() {
 client = server.available();
 if(client) {
 while(client.connected()) {
 while(!client.available()) {
 if(!client.connected()) break;
 delay(1);
 }
 int a = client.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
 }
}

28

WiFi TCP

● Once a packet has been
received from the client, the code
reads a byte from the client
packet and then uses it in the
switch() statement just like the
previous program using the serial
interface.

● Upload the program to the robot.

void loop() {
 client = server.available();
 if(client) {
 while(client.connected()) {
 while(!client.available()) {
 if(!client.connected()) break;
 delay(1);
 }
 int a = client.read();
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
 }
}

29

WiFi TCP

● The python program changes a
little bit. The serial library is replace
with the socket library which allows
access to network functions.

● The network connection is
configured in the second
highlighted line. It is configured for
TCP connection.

● The third highlighted line makes
the actual connection to the robot.
With the robot set up as the access
point, it has the default IP address
of 192.168.4.1.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((‘192.168.4.1’,80))
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.sendall(b‘a’)
 if event.type == pygame.K_s:
 s.sendall(b‘s’)
 if event.type == pygame.K_q:
 s.sendall(b‘q’)
 if event.type == pygame.K_w:
 s.sendall(b‘w’)

30

WiFi TCP

● There is one small change to the
quit event. Since a network
connection is being established, it
also has to be closed when the
program quits. If not, then the robot
code will not know that the client
has disconnected.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((‘192.168.4.1’,80))
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.sendall(b‘a’)
 if event.type == pygame.K_s:
 s.sendall(b‘s’)
 if event.type == pygame.K_q:
 s.sendall(b‘q’)
 if event.type == pygame.K_w:
 s.sendall(b‘w’)

31

WiFi TCP

● The other change to the python
code required is the changing the
s.write() to s.sendall().

● The socket library does not have a
write() function. It has a sendall()
function.

● Connect the computer WiFi to the
robot access point. Windows will sit
for a while looking like it is trying to
connect but what it really is doing
is trying to contact a server on the
internet. Once the network icon
changes, it is ready.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((‘192.168.4.1’,80))
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.sendall(b‘a’)
 if event.type == pygame.K_s:
 s.sendall(b‘s’)
 if event.type == pygame.K_q:
 s.sendall(b‘q’)
 if event.type == pygame.K_w:
 s.sendall(b‘w’)

32

WiFi TCP

● After connecting to the robot, run the the python program.

● Press the A and S keys. The red LED should turn on and off.

● Try the other keys.

● Congratulations, you have a working WiFi connection.

● As an exercise, add another set of keys to turn the speaker on and off. Pick
a tone.

● As a further exercise, use several keys to play notes on the speaker.

33

WiFi UDP

● Next, UDP packets will be used in
this example. UDP packets do not
require a connection. the program
sending packets, sends packets
not knowing if they were received.
The benefit is that packets can be
sent very quickly. The potential
issue is that some packets may
get lost due to radio interference
or something else.

34

WiFi UDP

● The Arduino program needs to be modified
to support UDP.

● The highlighted code shows all the changes.

● A new include file is added to support UDP
packets.

● A variable array is created to accept UDP
packets.

● And server.begin() is replace with
udp.begin() which also specifies the port
that packets will be sent to.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

WiFiUDP udp;

char cmd[256];

void setup()
{
 Serial.begin(115200);
 pinMode(4,OUTPUT);
 pinMode(5,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 udp.begin(80);
}

35

WiFi UDP

● In the beginning of the loop()
function, the code checks for a UDP
packet. If one has arrived, the
function returns the number of bytes
received.

● The if() statement executes if bytes
have been received.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 udp.read(cmd,256);
 int a = cmd[0];
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

36

WiFi UDP

● Once a packet has been received
and detected, the packet is read into
the array. The commands are a
single byte so only the first byte will
have the command.

● The second highlighted line assigns
the variable a the first byte of the
packet which contains the command.

● The rest of the code is the same as
before.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 udp.read(cmd,256);
 int a = cmd[0];
 switch(a) {
 case ‘a’: digitalWrite(5,HIGH);
 break;
 case ‘s’: digitalWrite(5,LOW);
 break;
 case ‘q’: digitalWrite(4,HIGH);
 break;
 case ‘w’: digitalWrite(4,LOW);
 break;
 }
 }
}

37

WiFi UDP

● The Python code changes a
little bit from the TCP code.

● The socket declaration is
changed. The second
argument is changed from
SOCK_STREAM to
SOCK_DGRAM. This indicates
UDP packets will be used.

● The second highlighted line
sets the variable address to the
address and port number of the
robot.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.sendto(b‘a’.address)
 if event.type == pygame.K_s:
 s.sendto(b‘s’,address)
 if event.type == pygame.K_q:
 s.sendto(b‘q’,address)
 if event.type == pygame.K_w:
 s.sendto(b‘w’,address)

38

WiFi UDP

● The other change is replacing
sendall() with sendto().

● The sendto() function requires
a second parameter which is
the address where the packet
is being sent.

● Upload the updated arduino
code, connect the WiFi to the
robot and then run the python
program. It should behave the
same way.

● This shows two ways
networking can be used.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 if even.key == pygame.K_a:
 s.sendto(b‘a’.address)
 if event.type == pygame.K_s:
 s.sendto(b‘s’,address)
 if event.type == pygame.K_q:
 s.sendto(b‘q’,address)
 if event.type == pygame.K_w:
 s.sendto(b‘w’,address)

39

GUI WiFi

● In this section a Graphical User
Interface will be created to control the
LEDs. The window will be 800 x 400
pixels.

● The position of the buttons are shown.

● The red button starts at pixel location
(600,100) and is 100 pixels wide and
tall.

● The green button starts at location
(600,250) and is also 100 pixels wide
and tall.

● The values shown will be used in the
python program.

600 700

100

200
250

350

40

GUI WiFi

● Sticking with the last
arduino program, the
python program will be
updated to provide two
buttons in the window to
turn an LED on and off.

● The python program will be
changed to provide the GUI
interface.

● Two rectangles will be
created and they will be the
buttons.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
pygame.init()
scn = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.MOUSEBUTTONDOWN:

41

GUI WiFi

● The python program will be
modified to provide the buttons
to control both LEDs.

● The changes are highlighted in
bold type.

● Two variables, button1 and
button2, are used to keep track
of the state of the button. The
buttons will toggle on and off.

import socket
import pygame

button1 = 0
button2 = 0

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
pygame.init()
scn = pygame.display.set_mode((800,400))
font = pygame.font.SysFont(“Arial”,20)
b1 = font.render(“RED”,True,(0,0,0))
b2 = font.render(“GREEN”,True,(0,0,0))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.MOUSEBUTTONDOWN:

42

GUI WiFi

● A font is generated for the
window. The Arial font will be
used and set to size 20 pixels.

● Below, the text is rendered and
stored in variables b1 and b2.
Pygame requires the text to be
rendered before it is placed in
the window. The text colors are
set to black.

import socket
import pygame

button1 = 0
button2 = 0

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
pygame.init()
scn = pygame.display.set_mode((800,400))
font = pygame.font.SysFont(“Arial”,20)
b1 = font.render(“RED”,True,(0,0,0))
b2 = font.render(“GREEN”,True,(0,0,0))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.MOUSEBUTTONDOWN:

43

GUI WiFi

● In the while loop, the KEYDOWN
event has been replaced with
MOUSEBUTTONDOWN event.
This checks if the mount button
was pressed.

● If the mouse button was
pressed, the coordinates of the
mouse are captured into
variables mX and mY. A function
can return more than 1 result.

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.MOUSEBUTTONDOWN:
 mX,mY = pygame.mouse.get_pos()
 if (mX > 600) and (mX < 700):
 if(mY > 100) and (mY < 200):
 button1 = 1 – button1
 if(mY > 250) and (mY < 350):
 button2 = 1 – button2

44

GUI WiFi

● Next, the position of the mouse is
compared with the location of the
buttons. Since the mouse buttons
are aligned vertically, the X
direction is checked. If the mouse
is between the left and right side of
the button, the program then
checks which button the mouse is
within.

● The button state is then updated. A
little math trick is done here. Since
the state is either 1 or 0, you can
subtract the button state from 1
and it will toggle from 1 to 0.

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if event.type == pygame.MOUSEBUTTONDOWN:
 mX,mY = pygame.mouse.get_pos()
 if (mX > 600) and (mX < 700):
 if(mY > 100) and (mY < 200):
 button1 = 1 – button1
 if(mY > 250) and (mY < 350):
 button2 = 1 – button2

45

GUI WiFi

● After checking the input and
updating the button state,
the window is to be drawn.

● First the window is cleared
to all black.

● Next, the button state is
checked. If 0, the button
color is set to dark gray, if 1,
the button is set to the LED
color. Also, the command is
sent to the robot.

 scn.fill((0,0,0))
 if button1 == 0:
 b1_color = (100,100,100)
 s.write(b's')
 else:
 b1_color = (200,0,0)
 s.write(b'a')
 if button2 == 0:
 b2_color = (100,100,100)
 s.write(b'w')
 else:
 b2_color = (0,200,0)
 s.write(b'q')
 pygame.draw.rect(scn,b1_color,(600,100,100,100))
 pygame.draw.rect(scn,b2_color,(600,250,100,100))
 scn.blit(b1,(620,150))
 scn.blit(b2,(610,300))
 pygame.display.flip()

46

GUI WiFi

● At the end, the buttons are
drawn.

● The two rectangle buttons
are drawn using the
specified colors.

● Next, the text is drawn on
top of the rectangle buttons.

● Lastly, the display is
updated.

 scn.fill((0,0,0))
 if button1 == 0:
 b1_color = (100,100,100)
 s.write(b's')
 else:
 b1_color = (200,0,0)
 s.write(b'a')
 if button2 == 0:
 b2_color = (100,100,100)
 s.write(b'w')
 else:
 b2_color = (0,200,0)
 s.write(b'q')
 pygame.draw.rect(scn,b1_color,(600,100,100,100))
 pygame.draw.rect(scn,b2_color,(600,250,100,100))
 scn.blit(b1,(620,150))
 scn.blit(b2,(610,300))
 pygame.display.flip()

47

GUI WiFi

● Try the python program. Don’t forget to connect the computer WiFi to the
robot access point.

48

GUI Driving

● In this section, you will learn how to
control the motors through the GUI.
A joystick will be created. We will
start with a new Arduino program
to accept the joystick position and
calculate the direction and speed
of the motors.

● The joystick uses a rectangle for
the background to show the
boundaries of the joystick.

● The joystick knob is a red circle.

● The X and Y positions are the
same values.

10 390

49

GUI Driving

● The python GUI program will
take the mouse position
within the joystick area and
send it to the robot to set the
speed in text format.

● The format will be simple as
shown below

200 200

● The first number is the X
position of the joystick and
the second number is the Y
position.

Initialize

Quit?

Mouse
Click?

End Program

In
Joystick

?

Send Motor
Speed to Robot

Update
Display

Update
Motor Speed

Yes

Yes Yes

No

No No

50

GUI Driving

● The flow chart to the right shows
how the python program is to work.

● First, the program initializes the
display window and network
connection.

● Then the program checks for inputs.

– First is the check if the program is
to quick.

– Next, the mouse button is checked.

Initialize

Quit?

Mouse
Click?

End Program

In
Joystick

?

Send Motor
Speed to Robot

Update
Display

Update
Motor Speed

Yes

Yes Yes

No

No No

51

GUI Driving

● If the mouse button is pressed, the
next step is to check if the mouse is
within the joystick range.

● If the mouse is within the joystick
range, then the speed control of the
robot is updated.

● Lastly, the speed control is sent to
the robot and the GUI display is
updated.

Initialize

Quit?

Mouse
Click?

End Program

In
Joystick

?

Send Motor
Speed to Robot

Update
Display

Update
Motor Speed

Yes

Yes Yes

No

No No

52

GUI Driving

● First, let’s make the GUI and test it.

● Afterwards, the network will be added
using UDP.

● The first part is setting up pygame,
creating the window and checking for
input.

● Variables jx and jy are created and
will be used for the joystick knob
position. It is set to the center of the
joystick.

import pygame
import socket

pygame.init()

screen = pygame.display.set_mode((800,400))
jx = 200
jy = 200

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()

53

GUI Driving

● The second part will draw the
joystick with the knob in the
center.

● Run the program and verify the
joystick is rendered.

import pygame
import socket

pygame.init()
screen = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()

 scn.fill((0,0,0))
 pygame.draw.rect((100,100,100),(10,10,380,380),4)
 pygame.draw.circle((200,0,0),(jx,jy),50)
 pygame.display.update()

54

GUI Driving

● Next, the mouse will control the
joystick. Insert the code in bold
where it is shown.

● The first bold line checks if the
left mouse button is pressed.
This can be used on touch
screens too.

● If the mouse button is pressed,
the second line gets the position
of the mouse.

import pygame
import socket

pygame.init()
screen = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if pygame.mouse.get_pressed()[0] == True:
 mX,mY = pygame.mouse.get_pos()
 if (mX >10) and (mX < 390):
 if (mY >10) and (mY <390):
 jx = mX
 jy = mY

 scn.fill((0,0,0))
 pygame.draw.rect((100,100,100),(10,10,380,380),4)
 pygame.draw.circle((200,0,0),(jx,jy),50)
 pygame.display.update()

55

GUI Driving

● If the mouse is within the bounds
of the joystick, the position of the
joystick knob is updated to the
mouse position.

● Try the program again and see if
the knob can be moved around.

import pygame
import socket

pygame.init()
screen = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if pygame.mouse.get_pressed()[0] == True:
 mX,mY = pygame.mouse.get_pos()
 if (mX >10) and (mX < 390):
 if (mY >10) and (mY <390):
 jx = mX
 jy = mY

 scn.fill((0,0,0))
 pygame.draw.rect((100,100,100),(10,10,380,380),4)
 pygame.draw.circle((200,0,0),(jx,jy),50)
 pygame.display.update()

56

GUI Driving

● Go back to the editor and add
the bold text.

● If the mouse button is not
pressed, the else statement is
executed. The joystick knob is
put back to the center when the
mouse button is not pressed.

import pygame
import socket

pygame.init()
screen = pygame.display.set_mode((800,400))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if pygame.mouse.get_pressed()[0] == True:
 mX,mY = pygame.mouse.get_pos()
 if (mX >10) and (mX < 390):
 if (mY >10) and (mY <390):
 jx = mX
 jy = mY
 else:
 jx = 200
 jy = 200

 scn.fill((0,0,0))

57

GUI Driving

● Moving to the Arduino software, a
program needs to be written to accept
commands from the GUI program.

● The GUI program will send two values,
jx an jy. The robot needs to convert
those values to speed and direction
control of the wheels.

● The code to the right is the setup for
the robot. UDP packets will be used.

● The digital pins for the motors are set
to outputs.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

WiFiUDP udp;

char cmd[256];
int x,y;

void setup()
{
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(14,OUTPUT);
 pinMode(15,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofrobot”);
 udp.begin(80);
}

58

GUI Driving

● The beginning of the loop() function
is similar to the UDP program for the
LED control.

● memset() function sets the contents
of a variable array to all zeros.

● After udp.read(), the packet read is
converted from text into two values
and stored in variables x and y.

● Then the variables are mapped from
the position in the GUI to a range of -
1023 to 1023 which is the maximum
duty cycle.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 memset(cmd,0,256);
 udp.read(cmd,256);
 sscanf(cmd,”%d %d”,&x,&y);
 x = map(left,10,390,-1023,1023);
 y = map(right,10,390,-1023,1023);
 int left = x + y;

int right = x – y;
left = constrain(left,-1023,1023);

 right = constrain(right,-1023,1023);
 if(left < 0) {
 analogWrite(13,-left);
 analogWrite(14,0);
 } else {
 analogWrite(13,0);
 analogWrite(14,left);
 }

59

GUI Driving

● The beginning of the loop() function
is similar to the UDP program for the
LED control.

● memset() function sets the contents
of a variable array to all zeros. The
first parameter is the variable cmd,
the second parameter is the value to
set the array. The third parameter
specifies the size of the array.

● The array needs to be cleared before
new data is inserted otherwise old
data can still be included.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 memset(cmd,0,256);
 udp.read(cmd,256);
 sscanf(cmd,”%d %d”,&x,&y);
 x = map(left,10,390,-1023,1023);
 y = map(right,10,390,-1023,1023);
 int left = x + y;

int right = x – y;
left = constrain(left,-1023,1023);

 right = constrain(right,-1023,1023);
 if(left < 0) {
 analogWrite(13,-left);
 analogWrite(14,0);
 } else {
 analogWrite(13,0);
 analogWrite(14,left);
 }

60

GUI Driving

● The udp.read() function fills the
array with the packet data received.

● The scanf() function converts the
text to two numbers and puts them
in variables x and y.

● The first parameter is the array that
holds the text. The second
parameter specifies the format. %d
indicates integer type number. The
third and fourth parameters specify
the variables to put the numbers.
Notice the &. It is needed to
reference the variable locations.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 udp.read(cmd,256);
 sscanf(cmd,”%d %d”,&x,&y);
 x = map(x,10,390,-1023,1023);
 y = map(y,10,390,-1023,1023);
 int left = x + y;

int right = x – y;
left = constrain(left,-1023,1023);

 right = constrain(right,-1023,1023);
 if(left < 0) {
 analogWrite(13,-left);
 analogWrite(14,0);
 } else {
 analogWrite(13,0);
 analogWrite(14,left);
 }

61

GUI Driving

● The map() function is used to
convert the range of values to
another range.

● The range of 10 to 390 will be
stretched to -1023 to 1023.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 udp.read(cmd,256);
 sscanf(cmd,”%d %d”,&x,&y);
 x = map(x,10,390,-1023,1023);
 y = map(y,10,390,-1023,1023);
 int left = x + y;

int right = x – y;
left = constrain(left,-1023,1023);

 right = constrain(right,-1023,1023);
 if(left < 0) {
 analogWrite(13,-left);
 analogWrite(14,0);
 } else {
 analogWrite(13,0);
 analogWrite(14,left);
 }

10 60 110 160 210 260 310 360

-1024

-512

0

512

1024

Joystick

M
o

to
r

62

GUI Driving

● The output of the map() function is
used to control the speed of the
motors and the direction. A
negative number indicates reverse.

● After converting to a speed control
and direction, the joystick position
is mixed with the two equation to
calculate the speed of each motor.

● The calculations can have results
exceeding 1023 so the constrain()
functions keeps the results from
exceeding 1032 or -1023.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 udp.read(cmd,256);
 sscanf(cmd,”%d %d”,&x,&y);
 x = map(x,10,390,-1023,1023);
 y = map(y,10,390,-1023,1023);
 int left = x + y;

int right = x – y;
left = constrain(left,-1023,1023);

 right = constrain(right,-1023,1023);
 if(left < 0) {
 analogWrite(13,-left);
 analogWrite(14,0);
 } else {
 analogWrite(13,0);
 analogWrite(14,left);
 }

63

GUI Driving

● Next, the left motor speed is set. If
the speed is negative, the motor is
set to operate in reverse. The
speed is negated since
analogWrite() can only use
positive numbers.

● If the speed is positive, the motors
are operated in the forward
direction.

void loop() {
 int ps = udp.parsePacket();
 if(ps) {
 udp.read(cmd,256);
 sscanf(cmd,”%d %d”,&x,&y);
 x = map(x,10,390,-1023,1023);
 y = map(y,10,390,-1023,1023);
 int left = x + y;

int right = x – y;
left = constrain(left,-1023,1023);

 right = constrain(right,-1023,1023);
 if(left < 0) {
 analogWrite(13,-left);
 analogWrite(14,0);
 } else {
 analogWrite(13,0);
 analogWrite(14,left);
 }

64

GUI Driving

● The right motor is controlled the
same way. if(right < 0) {

 analogWrite(16,-right);
 analogWrite(15,0);
 } else {
 analogWrite(16,0);
 analogWrite(15,right);
 }
 }
}

65

Updating GUI Program

● The joystick GUI program needs
to be updated to include sending
UDP packets to control the robot.

● Near the top of the program, add
the bold text. This configures the
socket connection.

● The second bold line is the IP
address of the robot and the port
number.

import pygame
import socket

pygame.init()
screen = pygame.display.set_mode((800,400))
s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
robot = (‘192.168.4.1’,80)
while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 s.close()
 pygame.quit()
 quit()
 if pygame.mouse.get_pressed()[0] == True:
 mX,mY = pygame.mouse.get_pos()
 if (mX >10) and (mX < 390):
 if (mY >10) and (mY <390):
 jx = mX
 jy = mY
 else:
 jx = 200
 jy = 200

 scn.fill((0,0,0))

66

Updating GUI Program

● The bold lines inserted after
checking the inputs build a
command using the values of jx and
jy. The first bold line, variable cmd is
created as a string to include jx and
jy with a space between the two.

● The second line sends the command
to the robot. the string cmd is
encoded into a simple character
array and sent to the robot.

● The last line slows down the
program. The robot cannot receive
too many packets too fast.

 if pygame.mouse.get_pressed()[0] == True:
 mX,mY = pygame.mouse.get_pos()
 if (mX >10) and (mX < 390):
 if (mY >10) and (mY <390):
 jx = mX
 jy = mY
 else:
 jx = 200
 jy = 200

 cmd = str(jx) + “ “ + str(jy)
 s.sendto(cmd.encode(),robot)
 scn.fill((0,0,0))
 pygame.draw.rect((100,100,100),(10,10,380,380),4)
 pygame.draw.circle((200,0,0),(jx,jy),50)
 pygame.display.update()
 pygame.time.wait(25)

67

GUI Driver

● Load the Arduino program.

● Connect the laptop to the robot.

● Run the python program.

● Click anywhere inside the joystick and the joystick knob will instantly move.

● Holding the mouse button, the joystick knob will follow.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67

