
Processing

 2

Introduction to Processing

Processing is a programming environment that makes writing programs easier.

It contains libraries and functions that make interacting with the program simple.

 3

Processing IDE

The development software to be used
is called Processing. Processing Is a
programming language and
development environment using Java.
Processing makes developing software
easier. More information can be found
at processing.org. The software is free
to download and use. The
development environment is similar to
the Arduino development environment.

 4

First Program

Try the program to the right. It's structure is
the same as the Arduino software. The one
small difference is that loop() is now
draw(). draw() behaves the same as
loop() and is executed repeatedly. When
the program starts, it first executes the
setup() function once and then repeatedly
executes the draw() function.

In the setup() function, there is a function
called size(). Size creates a window with
the size of the window specified in pixels. The
first number is the width. The second number
is the height.

The window can be thought of as a graph
with the 0,0 coordinate in the upper left hand
corner. The value of X increases from left to
right. The value of Y increases from top to
bottom.

In the draw() function is a function called
ellipse(). This function draws a circle or
ellipse. The first number is the x position. The
second number is the y position. The third
number is the width of the ellipse. The fourth
number is the height of the ellipse. If the third
and fourth numbers are the same, the ellipse
is a circle.

void setup()
{
 size(600,400);
}

void draw()
{
 ellipse(300,200,80,80);
}

Windowy

399

(0,0)

x

599

Result of Program

 5

Adding to the First Program

The color of the ellipse can be changed with
the function fill(). Add the function
fill() before the ellipse() function. The
ellipse should now be nearly black. Change
the number to any number in the range of 0 to
255 and run again. The number sets the gray
intensity level of the ellipse from black to
white.

Change the fill() function parameters with
the numbers shown to the right and run
again. When the fill() function gets three
numbers, it knows to set the ellipse to the
specified color. The first number is the
intensity of red. The second number is the
intensity of green. The third number is the
intensity of blue. The intensity ranges from 0
which is black and 255 which is the brightest.

Notice the second ellipse added to the
program. It is drawn on top of the first one.
Objects are always drawn on top of previous
objects. Add two more ellipses of different
sizes and colors and see how they are drawn
on top of each other.

void setup()
{
 size(600,400);
}

void draw()
{
 fill(10);
 ellipse(300,200,80,80);
}

void setup()
{
 size(600,400);
}

void draw()
{
 fill(200,50,200);
 ellipse(300,200,80,80);
 fill(10,255,0);
 ellipse(330,230,80,80);
}

Ellipse drawn over ellipse

 6

Interacting with the Program

The mouse can be used to interact with the
program. The position of the mouse can be
used by using two variables.

mouseX

mouseY

The variables are case sensitive. Replace the
X and Y coordinates in ellipse with mouseX
and mouseY. Make sure the X and Y are
capital letters. Run the program and see what
happens. As ellipses are generated, they are
drawn on top of previous ellipses. Remember
that newer objects are drawn on top of older
objects.

Now at the beginning of the draw() function,
add the function background(). Run the
program again. This time there is only one
ellipse that is moved around. When
background() is used, it clears the screen
of anything displayed previously for a new
start.

By default, the draw() function is executed 60
time a second which is the display refresh
rate. This is useful for making animations and
interactive graphics like this program does.

void setup()
{
 size(600,400);
}

void draw()
{
 fill(200,50,200);
 ellipse(mouseX,mouseY,80,80);
}

void setup()
{
 size(600,400);
}

void draw()
{
 background(0);
 fill(200,50,200);
 ellipse(mouseX,mouseY,80,80);
}

 7

Keyboard Interaction

This code will use the keyboard to change the
color of the ellipse. Processing has a variable
that indicates what key has been pressed.
The comparison is made against a character
and has to be in single quotes. Try running
the program. Add more key selections and
other colors.

The draw() function includes some
conditional programming. They are the if()
statements. The if() statement is used to
make comparisons. This one is comparing the
variable key to different letters. Notice that
two equal symbols are used. This is because
a single equal symbol indicates an
assignment. If you use a single equal in the
if() statement, then the result is always true.

If the comparison is true, then the code in the
braces after the if() statement will be
executed. If the result is not true, then the
program will skip the code between the
braces.

Multiple comparisons can be made. The else
statement lets another if() statement to be
executed if the previous one resulted in not
being true. Also notice there are no curly
braces after the second if() statement. This
can be done if only a single instruction is
needed for the true condition of the if()
statement.

void setup()
{
 size(600,400);
}

void draw()
{
 background(50);
 if(key == 'a') {
 fill(200,50,200);
 }
 else if(key == 'b')
 fill(0,255,0);
 ellipse(mouseX,mouseY,80,80);
}

Types of comparisons:

== equal
> greater than
< less than
>= equal or greater than
<= equal or less than
!= not equal

 8

Event Based Programming

Processing is an event based programming
environment. This means certain types of
functions execute when specific events
occur. This example shows the function
keyPressed() which is executed when a
key is pressed on the keyboard. It is not
called from any other part of the program.

This program uses the arrow keys. This
requires the use of another processing
variable called keyCode. Try this program.

In the keyPressed() function, the switch()
statement is used. This is used in place of
the if() else statements. It operates
similarly except the comparisons are
always equal.

The variable to be compared in specified
by the switch() statement. Then each line
has a case statement with a value. This
value is compared to the specified variable.
 If the comparison is true, all the code after
the colon is executed. More than one line
of code can exist after the colon.

At the end of the code for each case
statement is a break statement. The break
statement forces the program to exit the
switch() statement. If the break was not
included, the program would keep
executing code for all the other case
statements below.

void setup()
{
 size(600,400);
}

void draw()
{
 background(50);
 ellipse(mouseX,mouseY,80,80);
}

void keyPressed() {
 switch(keyCode) {
 case UP : fill(0,255,0);
 break;
 case DOWN : fill(255,0,0);
 break;
 case LEFT : fill(0,0,255);
 break;
 case RIGHT : fill(255,0,255);
 break;
 }
}

 9

Event Based Programming

Another event function is keyReleased().
This is executed when the key on the
keyboard is let go. This program turns the
ellipse black when a key is not pressed. Run
this program. Save this program. It will be
used again.

void setup()
{
 size(600,400);
}

void draw()
{
 background(50);
 ellipse(mouseX,mouseY,80,80);
}

void keyPressed() {
 switch(keyCode) {
 case UP : fill(0,255,0);
 break;
 case DOWN : fill(255,0,0);
 break;
 case LEFT : fill(0,0,255);
 break;
 case RIGHT : fill(255,0,255);
 break;
 }
}

void keyReleased() {
 fill(0,0,0);
}

 10

Other 2D Primitives

The rectangle primitive has four parameters.
The first two are for the position of the
rectangle. The coordinates given are the top
left corner of the rectangle. The Third
parameter is the width and the fourth is the
height.

rect(x,y,width,height);

The rectangle primitive can have more
parameters. Add a fifth one and it controls
how the corners of the rectangle can be
curved.

rect(x,y,width,height,curve);

Replacing the curve parameter with four
numbers allows each corner of the rectangle
to have different size curves.

void setup() {
 size(600,400);
}

void draw() {
 rect(20,20,100,50);
 rect(20,80,100,100,10);
 rect(20,200,50,50,10,5,10,5);
}

rect(x,y,width,height,topleft,topright,bottomright,bottomleft);

The three rectangles

 11

Other 2D Primitives

The triangle primitive has three coordinates for each corner.

triangle(x1,y1,x2,y2,x3,y3);

The quadrilateral has four coordinates for each of its corners.

quad(x1,y2,x2,y2,x3,y3,x4,y4);

Try each of the primitives out in a program.

void setup() {
 size(600,400);
}

void draw() {
 triangle(10,200,100,50,200,250);
 quad(400,50,550,70,500,300,410,280);
}

Triangle and quad

 12

Displaying Text

The function text() is used to display text in the window. The program below displays the
mouse coordinates at the top left corner of the window. The values 20,20 are the x and y
coordinates. The coordinates is the top left corner of the text. The first arqument in the
text() function is the text to be displayed. The word Mouse: is displayed. The values of the
mouse position is added to the end of Mouse:. Try it out.

void setup()
{
 size(600,400);
}

void draw()
{
 background(50);
 text(“Mouse: “ + mouseX + “ “ + mouseY,20,20);
 fill(200,50,200);
 ellipse(mouseX,mouseY,80,80);
}

Need the text to be larger? Use the function textSize(). Try out different sizes.

void setup()
{
 size(600,400);
}

void draw()
{
 background(50);
 textSize(32);
 text(“Mouse: “ + mouseX + “ “ + mouseY,20,20);
 fill(200,50,200);
 ellipse(mouseX,mouseY,80,80);
}

 13

Displaying Text

The text can be set to different colors or shades of gray using the fill() function. To set
a shade of gray, use one value in the function with a range of 0 to 255. After each fill(), all
things drawn on the screen will be that color. You need to add the fill() to change colors.
As seen in the program below, the text is set to gray and the ellipse is set to purple.

Change the text to a color instead of gray and try it out.

void setup()
{
 size(600,400);
}

void draw()
{
 background(50);
 textSize(32);
 fill(180); // set to gray
 text(“Mouse: “ + mouseX + “ “ + mouseY,20,30);
 fill(200,50,200);
 ellipse(mouseX,mouseY,80,80);
}

Notice the // in the program. This is a comment indicator. Anything to the right of // is
ignored by the computer. This is useful for putting notes in the program to provide a
description of what is happening.

 14

Animating

Next is to make an animation. This next
example will show a rectangle grow in size. It
starts on the left and grows to the right across
the screen then starts over. The variable a sets
the length of the rectangle. It is incremented
each time the draw() function repeats. Try the
program out and then change it to start at the
bottom of the screen and grow toward the top.
It will require a little math.

Notice that the variable a is checked with the
if() statement to determine if it reached 500.
If it increment to 500, a is set back to 1.

int a;
void setup()
{
 size(600,400);
 a = 1;
}

void draw()
{
 background(0);
 fill(0,150,200);
 rect(20,200,a,50);
 a = a + 1;
 if(a == 500) a = 1;
}

 15

More Animation

Now, let's try some movement. Set the size
of the rectangle to 50,50 pixels. Replace the
x coordinate with the variable a. Run the
program. The rectangle should move left to
right and then start over on the left side.

Add to the program to have the rectangle
move back to the original position. To do
this, a second variable needs to be added to
indicate the direction. Variable dir is set to 1
to indicate left to right movement. In the
draw() function, dir is checked for the
direction. If 1, the position is incremented.
The check is also included. If dir is 0, then
the rectangle is moving right to left. The
position is decremented. The position is also
checked to make sure it does not go left out
of the window.

int a;
void setup()
{
 size(600,400);
 a = 1;
}

void draw()
{
 background(0);
 fill(0,150,200);
 rect(a,200,50,50);
 a = a + 1;
 if(a == 500) a = 1;
}

int a;
int dir;
void setup()
{
 size(600,400);
 a = 1;
 direction=1;
}

void draw()
{
 background(0);
 fill(0,150,200);
 rect(a,200,50,50);
 if(dir == 1) {
 a = a + 1;
 if(a == 500) dir=0;
 else {
 a = a – 1;
 if(a == 0) dir = 1;
 }
}

 16

More Animation

The color can also be animated. Replace one
of the values in fill with the variable. The value
of a has to be reset after it reaches 255.

int a;

void setup()
{
 Size(600,400);
 a = 0;
}

void draw()
{
 background(0);
 fill(a,150,200);
 rect(200,200,50,50);
 a++;
 if(a >255) a = 0;
}

 17

Interacting With the Robotic
Arm

In this section, you will learn how to get the robotic arm kit talking with Processing. You
will get potentiometer positions from the robotic arm into Processing and make a simple
graphical user interface to control the Robotic arm.

The robotic arm needs to be connected to the computer running Processing with the
USB cable. All communications will occur over USB. The interface is called a COM port.
Processing will use the same COM port number that the Arduino software uses.

You will need to load the Firmata software into the robotic arm. It is included with the
Arduino software. Firmata provides a communications interface that allows the user to
access all the devices on the robotic arm. Processing has a library available to interact
with Arduino based devices using the Firmata software.

Start Processing. Select the Sketch menu and select Import Library then select Add
Library. A new window will pop up listing a variety of libraries that can be added. Look
for Arduino (Firmata) and install it.

Connect the robotic arm to the computer and start the Arduino software. Under the File
menu, select Examples. Under Examples locate Firmata and select StandardFirmata.
A new window will open with the Firmata program. Make sure the robotic arm is on and
click on the Upload Code button. This will compile and upload the Firmata software.
Once complete, you are ready to continue.

 18

Getting Potentiometer Data

In Processing, import the Arduino Firmata Library. Select
the Sketch menu then select Import Library. Locate
Arduino Firmata and select it. Then go back to the
Import Library menu and select Serial.

Enter the code after the import statements. The first line
is declaring a variable of type Arduino. In the setup()
function, the robotic arm is accessed with the Arduino()
function. In the draw function, the three potentiometers
are read using the port.readAnalog() functions. Analog
port 0 is the base potentiometer. The arm potentiometer
is the port 1 and port 2 is the elbow potentiometer.

The data is displayed with the println() function. Notice
how the data is displayed. To combine different
information to be displayed on the console, the + is used
connect them together. The “ “ inserts a space between
the numbers.

import cc.arduino.*;
import org.firmata.*;
import processing.serial.*;

Arduino port;

void setup()
{
 port = new Arduino(this,”COM3”,57600);
}

void draw() {
 int b = port.readAnalog(0);
 int a = port.readAnalog(1);
 int e = port.readAnalog(2);
 println(b + “ “ + a + “ “ + e);
}

 19

Changing Colors

Let's do something with the potentiometer values. We'll use them to change the color of
the program window. Using the same code as before, instead of printing the data, the
data is used to change the color of the window.

After the values of the potentiometers are read, the values need to be scaled to fit the
color range values. The potentiometers has a range of 0 to 1023 while each color has a
range of 0 to 255. After the scaling, the window color is updated.

Make sure the robotic arm kit is on and the USB cable is plugged into the computer.
Start the Processing program and adjust the potentiometers.

Notice the // in various parts of the program. These are called comments. These are
notes you can use to remind you what parts of the program do. The computer does not
try to execute them. You can use comments anywhere. // indicates the start of the the
comment to the right. Anything to the left is part of the program instructions.

import cc.arduino.*;
import org.firmata.*;
import processing.serial.*;

Arduino port; // declare a serial port

void setup()
{
 port = new Arduino(this,”COM3”,57600); // open and configure
 size(1100,600); // open a window
}

void draw() {
 float r = port.analogRead(0); // get potentiometers
 float g = port.analogRead(1);
 float b = port.analogRead(2);
 r = map(r,0,1023,0,255); // scale to 0­255 range
 g = map(g,0,1023,0,255);
 b = map(b,0,1023,0,255);
 background(r,g,b); // set window to new color
}

 20

Moving an Object

In this new program, we will use the potentiometer to move an object in Processing. We
will keep most of the previous program up until the map functions. The background is set
to black which clears anything drawn before. Next, the rectangle is drawn with the X
position set to the first potentiometer value. With the robotic arm on and the Firmata
program still running, start this program and adjust the left potentiometer.

As an exercise, add two more rectangles, each controlled by the other two potentiometers.
Make each rectangle a different color.

And to make it more interesting, go back to one rectangle but use the potentiometer to
control X and Y. Use the third potentiometer to control the size of the rectangle.

import cc.arduino.*;
import org.firmata.*;
import processing.serial.*;

Arduino port; // declare a serial port

void setup()
{
 port = new Arduino(this,”COM3”,57600); // open and configure
 size(1100,600); // open a window
}

void draw() {
 float r = port.analogRead(0); // get potentiometers
 float g = port.analogRead(1);
 float b = port.analogRead(2);
 background(0); // set window to black
 rect(r,550,100,20);
}

 21

Building a GUI

GUI stands for Graphical User Interface. We will make one to control the robotic arm. It
will consist of three sliders to control the three servos. Two programs need to be written,
one in Processing to provide the GUI and one in the Arduino software to get the robotic
arm to receive commands and move the robotic arm.

For Processing, the flow of the program is get inputs, update the graphics and send
command to the robotic arm. For the robotic arm, it is listen for data input, get values,
update servos.

The GUI is shown below. Thee are three sliders. They are made with two rectangles.

 22

GUI Construction

Coordinates of the sliders are important. The image below shows the outline of the
sliders. The sliders are 100 pixels wide and 500 pixels tall. The top left coordinate for the
slider on the left is (50,20). The bottom right corner is (50+100,20+500) or (150,520).
The second slider top left corner is (250,20). The third slider top left corner is (450,20).
Calculate the bottom right corner for the second and third slider.

To know when a slider is being controlled, the program has to determine if the mouse is
inside the slider as shown by the rectangles. Two comparisons need to be made, one in
the x direction and the other in the y direction. The mouse position needs to be between
the X and Y ranges. Outside the ranges, no slider should be controlled.

(50,20) (250,20) (450,20)

(150,520) (350,520) (550,520)

 23

Making a Slider

We now move on to build up a program to control the robotic arm using a graphical user
interface. The interface will work with a mouse or touch screen. To keep it simple, we will
use two rectangles. One rectangle will be long and skinny and show the length of the
slider. The other rectangle will be the knob of the slider.

A variable p1 is declared first. This makes is a global variable so that all functions can
use it. In setup(), the window is sized and p1 is initialized to a start value.

In the draw() function, the first check is to see if the mouse button is pressed. If so, the
mouse location is checked. The top left corner of the knob has an X value of 50 and is
100 pixels long so the the mouseX is checked if it is within 50 and 150. If so, the Y value
is checked to see if it is between 20 and 520 pixel. The length of the slider is 500 pixels
starting at pixel Y value of 20. If the mouse is within the X and Y ranges of the slider, the
slider knob is updated to the Y position of the mouse. Notice when you run the program
that if you click the mouse anywhere within the ranges, the knob will be positioned there.
You don't have to click on the knob to move it. If you hold the mouse button down and
move the mouse, the slider knob will move with the mouse as long as the mouse is within
the ranges.

In the if() statement, notice the && symbols. This stands for AND. This allows you to
compare more than one thing and both comparisons must be true for the if() statement
result to be true.

int p1; // hold current position of slider knob

void setup() {
 size(800,600);
 p1 = 100; // set initial position
}

void draw() {
 if(mousePressed) { // check if in range
 if((mouseX > 50) && (mouseX < 150)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p1 = mouseY; // update knob position
 }
 }
 }
 background(0); // clear screen
 fill(80); // draw slider
 rect(100,20,10,500,5);
 fill(200,0,0); // draw knob
 rect(50,p1,100,50,2);
}

 24

Making Three Sliders

The robotic arm has three servos
to control. We need to add two
more sliders.

First, create two more variables.
Then in the draw() function, we
need to check the mouse position
in three areas to determine which
of the three sliders to modify.

Notice the code is the duplicated
for each slider. The mouseX
position is compared to three
different ranges of numbers. The
first slider is positioned at 100,
the second at 300 and the third at
500.

At the bottom of the code, the
rectangles are drawn. First, all
three slider lengths are drawn
then the knobs are drawn.

Each knob has its own variable.

Try the program out and see how
the sliders behave.

int p1,p2,p3;

void setup() {
 size(800,600);
 p1 = p2 = p3 = 100;
}

void draw() {
 if(mousePressed) {
 if((mouseX > 50) && (mouseX < 150)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p1 = mouseY;
 }
 }
 if((mouseX > 250) && (mouseX < 350)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p2 = mouseY;
 }
 }
 if((mouseX > 450) && (mouseX < 550)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p3 = mouseY;
 }
 }
 }
 background(0);
 fill(80);
 rect(100,20,10,500,5);
 rect(300,20,10,500,5);
 rect(400,20,10,500,5);
 fill(200,0,0);
 rect(50,p1,100,50,2);
 rect(250,p2,100,50,2);
 rect(450,p3,100,50,2);
}

 25

Making Three Sliders

Let's add the Firmata library. In the
setup() function, notice three lines
after configuring the port. The
three functions configure the digital
pins 3, 5, 6 to generate servo
signals. All port configurations are
performed in the setup() function.

Also, the servos are positioned to
start starting point.

This only covers the setup()
function. The draw() function is
needed and is on the next page. It
must be added to the program.

import cc.arduino.*;
import org.firmata.*;
import processing.serial.*;

Arduino port;
int p1,p2,p3;

void setup() {
 size(800,600);
 p1 = p2 = p3 = 100;
 port = new Arduino(this,”COM3”,57600);
 port.pinMode(3,Arduino.SERVO);
 port.pinMode(5,Arduino.SERVO);
 port.pinMode(6,Arduino.SERVO);
 port.servoWrite(3,90);
 port.servoWrite(5,80);
 port.servoWrite(6,90);
}

 26

Making Three Sliders

In the draw function, everything
stays the same. At the bottom
are three map() functions that
convert the slider position to the
range of the servos. The base
servo can move from 1 to 179.
Notice that it is entered as 179
to 1. This is to make the robotic
arm move left to right as the
slider is moved from top to
bottom.

The arm servo has a shorter
range of 1 to 80. The elbow has
a range of 1 to 179. Remember,
the sliders have a range of 20 to
520. That range is larger than
the servos can handle so the
map() function is used to scale
to the proper range.

The (int) in front of the map()
function is to convert the results
of the map() function from
floating point to integer. The
Arduino map() function works
with integers while Processing
is only floating point so the
number has to be converted to
the proper type. The
servoWrite() function uses
integers only.

void draw() {
 if(mousePressed) {
 if((mouseX > 50) && (mouseX < 150)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p1 = mouseY;
 }
 }
 if((mouseX > 250) && (mouseX < 350)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p2 = mouseY;
 }
 }
 if((mouseX > 450) && (mouseX < 550)) {
 if((mouseY > 20) && (mouseY < 520)) {
 p3 = mouseY;
 }
 }
 }
 background(0);
 fill(80);
 rect(100,20,10,500,5);
 rect(300,20,10,500,5);
 rect(400,20,10,500,5);
 fill(200,0,0);
 rect(50,p1,100,50,2);
 rect(250,p2,100,50,2);
 rect(450,p3,100,50,2);
 int base = (int)map(p1,20,520,179,1);
 int arm = (int)map(p2,20,520,1,80);
 int elb = (int)map(p3,20,520,1,179);
 port.servoWrite(3,base);
 port.servoWrite(5,arm);
 port.servoWrite(6,elb);
}

 27

End

At this point, you have a basic idea of creating shapes, detecting keys pressed and
simple animations. This will be used with the rover for the remote operations.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

