
1

Arduino Programming and
Interfacing

Stensat Group LLC, Copyright 2017

2

Robotic Arm Experimenters Kit

3

Legal Stuff

Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and
documentation.

There is a 90 day warranty for the kit against component defects. Damage caused by the
user or owner is not covered.

Warranty does not cover such things as over tightening nuts on standoffs to the point of
breaking off the standoff threads, breaking wires off the motors, causing shorts to
damage components, powering the motor driver backwards, plugging the power input
into an AC outlet, applying more than 9 volts to the power input, dropping the kit, kicking
the kit, throwing the kit in fits of rage, unforeseen damage caused by the user/owner or
any other method of destruction.

If you do cause damage, we can sell you replacement parts or you can get most
replacement parts from online hardware distributors.

This document can be copied and printed and used by individuals who bought the kit,
classroom use, summer camp use, and anywhere the kit is used. Stealing and using this
document for profit is not allowed.

If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

 44

Computer Board
and

Arduino Software

 55

Parts of the Robotic Arm Kit

The robotic arm kit includes a computer. It is a small computer called a
microcontroller. It is able to take inputs and control outputs. Inputs can be
potentiometers and sensors and outputs can be lights, sound and motors.

Below is a photo of the robotic arm base. Included on the base are three
potentiometers, a speaker, three LEDs and a connections for three servos.

A USB port is used to upload programs.

Digital ports allow you to connect the LEDs and speaker to the microcontroller.

Microcontroller

USB Port

LEDs

Speaker

Potentiometers

Digital
Ports

 66

Using Arduino

This is the arduino software. The
software will let you enter programs
and upload the code to the processor
board. It is called an Integrated
Development Environment or IDE.

The large white area is where the
code is entered. The black area below
is where error messages will be
displayed such as when there is an
error in the code or the software
cannot upload code for some reason.

The buttons below the menu have
different functions. The first called
Verify Code will compile the code and
check for errors but not upload the
code. The next button will do the same
as the first but will also upload the
code. New Program button opens a
new copy of the program allowing you
to start writing another program. Open
and Save are for opening and saving
the code you have written. Serial
Monitor button opens a new window
allowing you to interact with the
processor. The Serial Monitor window
allows the processor to display
information and you to send
information.

Verify
Code

Upload
Code

New
Program

Open
Save

Serial
Monitor

 77

Setting Up Arduino

To set up the kit with a computer, do the following:

1. Start the Arduino software.

2. Select the menu Tools and locate the item Board. A sub menu will open. Select Arduino
Pro or Pro Mini.

3. Plug the kit into the computer. Let the computer load the device driver. If a device driver is
not found, follow instructions at then end of this document.

4. Under the Tool menu, select Port and locate the COM port for the kit. It is usually COM 3 or
higher. If more than one COM port show up. Select the higher number.

This completes the set up.

 88

Program Development
Sequence

There is a cycle to programming the processor board. First, you write code using
instructions people can read. The instructions are called a computer language. Next,
the code gets compiled which translates what you typed to machine code that the
computer understands. Lastly, the code is executed by the computer. If there is an
error, you change you code and start the process over.

Enter Code

Execute

Compile

 99

First Program

Enter the program on the right in the
editor. The compiler is case
sensitive so pay attention to
capitalized letters.

Turn on the kit using the power
switch.

Click on the Upload Code button to
compile and upload the program. It
will ask you to save the program.
Name it hello.

When the status message at the
bottom of the window says done
uploading, click on the Serial
Monitor button. The Serial Monitor
window pops up with the message
being displayed.

Experiment by changing the
message.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.println(“Hello World”);
}

Serial Monitor Window

Upload
Code

Serial
Monitor

 1010

What are Functions

A function is basically a set of instructions
grouped together. A function is created to
perform a specific task. The set of
instructions for a function are bounded by
the curly brackets as seen in the code.

The setup() function is used to initialize
the processor board, variables, and
devices. It is executed first and only once.
Inside functions, you can call other
functions. Serial.begin() is a
function.

You will notice that some lines end with a
semi-colon. This is used to identify the
end of an instruction. An instruction can
be an equation or function call. When you
create a function such as setup(), you
do not need a semi-colon. Only the
instructions inside the curly brackets end
with a semicolon.

The program is made up of two functions.
setup() function is run at reset, power
up or after code upload only once. It is
used to initialize all the needed interfaces
and any parameters.

loop() function is run after the setup()
function and is repeatedly run hence the
name loop.

This program configures the serial
interface to send messages at 9600 bits
per second. The message is “Hello
World” and is repeatedly displayed.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 Serial.println(“Hello World”);
}

Serial.begin() is a function that
intializes the serial interface and sets
the bit rate.

Serial.println() sends the
specified message over the serial
interface and moves the cursor down
one line.

delay(500) is a command to stop the
program for 500 milliseconds.

 1111

What is in the Software

In the setup() function, it executes the function Serial.begin(9600). This function
initializes the serial interface which is connected to the USB port to allow for
communications. 9600 is the bit rate or how fast the data moves over the USB port. The
data moves at 9,600 bits per second. The serial monitor window has its data rate that can
be set and must match what Serial.begin() is set to.

In the loop() function, it executes the function Serial.print(“Hello world”).
This function sends the text in quotes to the UART. This is displayed in the Serial Monitor
window.

The other function is called delay(). This function stops the program for a specified
period of time. The unit is in milliseconds. The code below displays the text every half
second.

void setup()
{

Serial.begin(9600);
}

void loop()
{

Serial.println(“Hello World”);
delay(500);

}

 1212

Turning on the Lights

Take a jumper wire and stick one end into D2
pin. Take the other end and connect it to LED1
pin as shown in the picture.

Open a new program and enter the code to the
right. Click on the Upload Code button. You will
be asked to save the program to a file. Pick a
name like blinky and save. The software will
then compile and upload the code.

The LED should start blinking.

void setup()
{
 pinMode(2,OUTPUT);
}

void loop()
{
 digitalWrite(2,HIGH);
 delay(500);
 digitalWrite(2,LOW);
 delay(500);
}

 1313

How the Code Works
In the setup() function, the function
pinMode(2,OUTPUT) is used to configure the digital
pin 2 to be an output so it can control the LED. You
always need to configure the digital Pin to be an
output when using it to control something like the
LED.

In the loop() function, digital pin 2 is set high which
causes the pin to generate 5 volts. The LED turns on.
The delay() function halts the program for 500
milliseconds. The next digitalwrite() command
sets digital pin 2 to 0 volts turning off the LED.

You can think of the digital pin as a light switch. It can
be turned on and off. The computer language uses
HIGH for the on state and LOW for the off state.

Experiment and change the delay settings to blink at
different rates. How fast can you make the LED blink
before you cannot see if blink?

What is an LED?

LED stands for Light Emitting Diode. It is a
semiconductor device that generates light when an
electric current passes through it. Current can only
travel through the LED in one direction. In the wrong
direction, the LED does not light up.

LEDs need the to current flowing through it limited
otherwise it would pull a lot of current on its own and
burn up. A resistor is used to reduce the current
flowing through the LED. A resistor is a device that
limits current flowing through a circuit. A circuit
diagram to the right shows the LED connected to 5
volts.

The LED has an anode and a cathode. When the
anode is at a higher voltage than the cathode, the
LED will conduct current and light up. Do the reverse
and the LED does not light up.

void setup()
{

pinMode(2,OUTPUT);
}

void loop()
{

digitalWrite(2,HIGH);
delay(500);
digitalWrite(2,LOW);
delay(500);

}

Anode

Cathode

Resistor

5V

 1414

Two LEDs

Using the same blinky program, you will add a
second LED. Connect D4 to LED 2, the yellow
LED. Modify your blinky program to include the
extra code in bold shown to the right.

Click on the Upload Code button. Once the
program uploads, you should have the red and
yellow LEDs blinking back and forth.

On your own, add the third LED. Pick a digital pin
and connect it to the green LED.

Change the program to blink each LED in
sequence.

void setup()
{
 pinMode(2,OUTPUT);
 pinMode(4,OUTPUT);
}

void loop()
{
 digitalWrite(2,HIGH);
 digitalWrite(4,LOW);
 delay(500);
 digitalWrite(2,LOW);
 digitalWrite(4,HIGH);
 delay(500);
}

 1515

Make Sound

A speaker is a device that can make sounds.
Connect digital pin D9 to the SPEAKER pin.
Start a new program and enter the code below. To
make a sound, you use the tone() function. The
tone function takes two numbers, the digital pin
number and the tone frequency. Try the program
below and change the tone frequency. Pick a
number between 40 and 5000.

void setup()
{
 pinMode(2,OUTPUT);
 pinMode(4,OUTPUT);
 pinMode(9,OUTPUT);
}

void loop()
{
 digitalWrite(2,HIGH);
 digitalWrite(4,LOW);
 tone(9,2000);
 delay(500);
 digitalWrite(2,LOW);
 digitalWrite(4,HIGH);
 tone(9,1500);
 delay(500);
}

 1616

Musical Notes

Musical notes have specific frequencies. Since
the tone() function uses frequency to set the
pitch, you will need to translate notes to
frequencies.

A C note has a frequency of 261 Hz. A D note
has a frequency of 294 Hz.

In the code shown, there are these #define
statements that are used to assign a value to a
capital letter. These are not variables so they do
not take up space. These are constants. Instead
of entering numbers for tones, you can just enter
the musical note. It makes the code more
understandable. Try out the program. Add more
notes and different delays.

#define C 161
#define D 294
#define E 329
#define F 349
#define G 392
#define A 440
#define B 493
#define C2 523

void setup() {
 pinMode(9,OUTPUT);
}

void loop() {
 tone(9,C);
 delay(500);
 tone(9,C2);
 delay(500);
}

 1717

Play Music

For this program, you will learn about
data arrays and for() loops. A data array
is a group of variables with the same
name but uses a number to select which
variable is used. Variable note is an
array. It is indicated by the square
brackets after the name. This bracket is
used to specify how many elements or
variables are in the array. For this
program, there are 7 elements. You also
see that the elements are set with the
notes in the curly brackets. There can be
no more than 7 values put into the array.

There is also the dur array. This array is
used to determine how long the note
plays. 4 is for quarter note, 8 is for 1/8
note. A whole note is 1.

The for() loop lets your program loop
through a specific number of time. There
are three parts to the for() loop. The first
part sets the starting condition. It declares
a variable i and sets it to 0. The second
part tests the value of i and if it is not less
than p which is 7, the program exits the
for loop. The last part increments i by 1
each time it loops. All code between the
curly brackets after for() is executed until
i is not less than p.

Notice the noTone() function. This turns
off the tone being generated. A short
delay is added. This allows same notes
playing in a row to be distinct.

Try the program out and see how it plays.
Try other music. You can change the size
of the array. Remember to change the
value of p.

#define C 161
#define D 294
#define E 329
#define F 349
#define G 392
#define A 440
#define B 493
#define C2 523
#define p 7 // number of notes

int note[p] = { C,C,G,G,A,A,G};
int dur[p] = {4,4,4,4,4,4,1}
void setup() {
 pinMode(9,OUTPUT);
}

void loop() {
 for(int i=0;i<p;i=i+1) {
 int t = 1000/dur[p];
 tone(9,note[i]);
 delay(t);
 noTone(9);
 delay(20);
 }
}

 1818

Push Button

This experiment triggers the sound when the
button is pressed. When the button is
released, the tone continues for two seconds.

Use a jumper wire and connect it to the
BUTTON and digital pin D10.

Open a new program and enter the code to
the right. Once completed, click on the Upload
Code button. Enter the file name alarm.

void setup()
{
 pinMode(10,INPUT);
 pinMode(9,OUTPUT);
}

void loop()
{
 int a;
 a = digitalRead(10);
 if(a == 0) {
 tone(9,2000,1000);
 tone(9,1000,2000);
 }
}

How it works:

A push button is also known as a
momentary switch. It only closes its
contact with pressed. Closing the
contacts completes the electrical
circuit. For this circuit, the digital pin
D10 sees 5 volts. When the push
button is pressed, D10 sees 0 volts. 0
volts is represented as value zero. 5
volts is represented as one.
The function digitalRead() returns a
one or a zero depending on the
voltage on pin D10. If the variable a is
set to zero, the button is pressed. If
the variable a is set to one, the button
is not pressed.

 1919

How a Potentiometer Works
The potentiometer is a resistor device with a wiper that can contact any part of the
resistor. The wiper will have a different resistance based on where it is making contact.
Contact X is connected to the negative side of a power source which is zero volts.
Contact Z is connected to the positive side of a power source. Contact Y, which
connects to the wiper, will have a voltage in between the negative and positive side of
the power source. The closer the wiper is to X, the closer to zero volts. The closer the
wiper is to Y the more positive the voltage.

Potentiometers are useful for many things. They are used for volume control on radios
or other audio devices. For the robotic arm kit, the potentiometer will be used to set the
position of the parts of the arm.

On the robotic arm kit, each potentiometer has its X contact connected to zero volts and
the Z contact connected to 5 volts. As you adjust the potentiometer knob, the voltage at
Y will vary between 0 and 5 volts.

Resistive
Strip

Wiper

X Y Z

 2020

Measuring the Potentiometers

The program to the right introduces a new function
called analogRead(). The three potentiometers are
connected to three analog input ports. Base is analog
port 0. Arm is analog port 1. Elbow is analog port 2.

Start a new program and enter the code. When it is
uploaded, open the serial monitor. Adjust the BASE
knob and see how the number in the first column
changes. You should see that the numbers range
from 0 to 1023. Adjust the other knobs and see their
respective columns change values.

The analog converter converts a voltage to a number.
0 is the lowest voltage and 1023 is the highest
voltage which is 5 volts.

A variable is a memory location for storing a piece of
data. Variables are given names. This lets the
memory location to be easily used when writing a
program. You have to tell the computer you want to
store data by declaring a variable. You can declare
many variables. Each one needs a unique name. In
this program, three variables are declared as int. int
stands for integer which means whole number.

void setup()
{
 Serial.begin(9600);
}

void loop()
{
 int a;
 int b,c;
 a = analogRead(0);
 b = analogRead(1);
 c = analogRead(2);
 Serial.print(a);
 Serial.print(“ “);
 Serial.print(b);
 Serial.print(“ “);
 Serial.println(c);
 delay(200);
}

 2121

Using the Inputs to Control
Outputs

Next is to use the potentiometer to control
something. This example will use the
potentiometer to control the tone going to
the speaker. Connect a jumper from D9 to
the SPEAKER.

Start a new program and enter the code to
the right and click on the Upload Code
button. Turn the BASE knob and the tone
should change pitch.

void setup()
{
 pinMode(9,OUTPUT);
}

void loop() {
 int a = analogRead(0);
 int b = map(a,0,1023,100,1000);
 tone(9,b);
}

There is a new function to learn
called map(). It converts one range
of number to another range. It is like
scaling. Since the analog port can
generate a range of numbers from 0
to 1023, the input range of the map()
function is set to that. The output
range is set to whatever you want.
The example shows 100 Hz to 1000
Hz. It can be a different range like 30
to 5000. Experiment with different
ranges.

b = map(a,c,d,y,z);

b is the result from the map function.
a is the variable being converted.
c is the low end that a can go.
d is the high end that a can go.
y is the new low end.
z is the new high end.

 2222

What is a Servo

A servo is a geared motor with feedback used
to control the position of the shaft of the
motor. The servo consists of a motor that
drives a bunch of gears to reduce the speed
of the output spline or shaft. A potentiometer
or variable resistor is connected to the output
shaft and turns with the shaft. As it turns
clockwise or counter clockwise, the resistance
of the potentiometer changes. The resistance
value indicates the angle of the shaft. The
potentiometer feeds a voltage signal based on
the position of the shaft. A reference signal
feeds a voltage signal for the desired position.
The error detection circuit compares the two
voltages and generates a voltage to power the
DC motor in the desired direction until the
position signal equals the reference signal.
When the position signals equals the
reference signal, the DC motor stops turning
and the shaft is at the right angle.

The processor board uses pulses to control
the position of the servo. The servo has an
electronic circuit convert the pulse width to a
position voltage. The processor board sends a
pulse 50 to 60 times a second. The width of
the pulse determines the position of the shaft
which can range from 0 to 180 degrees.

Neutral position is 90 degrees. The pulse
width is 1.5 milliseconds (ms). 0 degree
position is specified with a pulse width of 1
ms. 180 degree position is specified with a
pulse width of 2 ms.

The wave forms to the right shows what the
signal looks like.

PWM Waveform

 2323

Programming the Arm

The diagram to the right shows the potentiometers
connected to the computer board along with the servos.

The servos are connected to digital pins number 3, 5 and 6.
The potentiometers are connected to the analog ports 0,1
and 2.

The program needs to operate in a specific sequence. It
must first measure the state of the potentiometers. Second,
it must calculate the servo angles and finally set the servo
angles. This sequence is repeated.

ComputerComputer

Servos

Potentiometers

D3 D5 D6

A0 A1 A2

Measure
Potentiometers

Calculate
Servo
Angles

Update
Servo
Angles

Program Flow Chart

 2424

Programming the Arm
On to the software, a library needs to be
added. A library is a file that contains a
collection of useful functions. You will need to
include the servo library which has functions to
control the robotic arm servos.

Click on the menu Sketch and select Include
Library. Locate the Servo library in the list and
select it. An include statement is inserted at the
top of the program. This tells the compiler to
include that library.

Next, three servos need to be defined. the
base servo will let you control the servo at the
bottom and rotate the arm left and right. The
arm servo will control the second servo that
moves the arm up and down. The third servo
controls the elbow that allows the arm to
extend.

In the setup() function, the attach() functions
assign each servo to a digital port. Notice the
servo name is in front of the attach() function
separated by a period. This is object oriented
programming. Any servo function can be
performed by including the name of the servo
in front of the function with the period in
between.

In the loop() function, the three potentiometers
are measured using the analogRead()
functions. Next, the calculation to convert the
range of the potentiometers to the servos is
performed using the map() function. Lastly, the
servo positions are updated using the write()
function. Again, notice that the servo names
are used with the write() function.

#include <Servo.h>

Servo base;
Servo arm;
Servo elbow;

void setup() {
 base.attach(3);
 arm.attach(5);
 elbow.attach(6);
 Serial.begin(9600);
}

void loop() {
 int b = analogRead(0);
 int a = analogRead(1);
 int e = analogRead(2);
 b = map(b,0,1023,179,1);
 a = map(a,0,1023,1,80);
 e = map(e,0,1023,1,179);
 base.write(b);
 arm.write(a);
 elbow.write(e);
}

2525

End

 2626

Loading and Configuring
Arduino Software

● Download the latest Arduino software from www.arduino.cc

● It can be installed anywhere on the computer.

● Open the folder and double click Arduino.

● The first step is to select the correct processor. Arduino software supports many
different variations.

● In the arduino program select menu “Tools”

● Select “Board”

● Select “Arduino Pro or Pro Mini” at or near the top of the menu.

● Go back and select “Processor” under the “Tools” menu.

● Select “Atmega328 (5V, 16MHz)”

 2727

Configuring Arduino Software

● Plug the processor board into the computer USB port

● Let the operating system find the drivers. (network connection required)

– The driver is also included with arduino software

● In the arduino program select menu “Tools”

● Select “serial Port”

● Select the appropriate COM port.

– If you have a modem built in or existing COM ports, the COM number
for the processor will usually be the highest number.

● Next two pages describe how to install the drivers if needed.

2828

Windows COM Port

● If the Serial Port menu does not show any COM ports try the following:

● Go to http://www.ftdichip.com/Drivers/VCP.htm

● In the table on the website, locate the row specifying Windows.

● Click on the link setup executable and download the
software.

● Right click on the icon labeled CDM v2.12.00..... and select
Run as Administrator in the menu that pops up.

● Follow the instructions to install. You have to run the installation
program as an administrator or the driver will not install.

● Go back to Arduino and select the COM Port it gives you.

● Most likely, the COM port will be COM3. If there is more
than one COM port, choose the higher number.

http://www.ftdichip.com/Drivers/VCP.htm

2929

Macintosh OS X USB Driver
Installation

● Go to http://www.ftdichip.com/Drivers/VCP.htm

● Select VCP driver (Virtual COM Port) for Mac .

● Pick the driver for the version of MAC OSX.

● Download and double click on the file.

● A window will open showing two packages.

● Double click the package for the OS version you have.

● Follow instructions for the installation.

● Go back to Arduino and select the Serial Port: /dev/tty.usbserial-
Daxxxxxx.

● The xxxxxx will be some combination of letters and
numbers.

● If it is not seen, reboot the mac. Make sure the processor
board is plugged into the mac using the USB cable.

http://www.ftdichip.com/Drivers/VCP.htm

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

