
Sten-SLATE ESP Kit

Stensat Group LLC, Copyright 2020

Legal Stuff

Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and
documentation.

There is a 90 day warranty for the Sten-SLATE ESP kit against component defects. Damage
caused by the user or owner is not covered.

Warranty does not cover such things as over tightening nuts on standoffs to the point of
breaking off the standoff threads, breaking wires off the motors, causing shorts to damage
components, powering the motor driver backwards, plugging the power input into an AC
outlet, applying more than 9 volts to the power input, dropping the kit, kicking the kit, throwing
the kit in fits of rage, unforeseen damage caused by the user/owner or any other method of
destruction.

If you do cause damage, we can sell you replacement parts or you can get most replacement
parts from online hardware distributors.

This document can be copied and printed and used by individuals who bought the kit,
classroom use, summer camp use, and anywhere the kit is used. Stealing and using this
document for profit is not allowed.

If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

Electrostatic Warning

The Sten-SLATE Experimenters Kit is sensitive to static electricity. Handle with care and be
careful to discharge yourself before handling. Use the silver anti-static bag as an anti-static
mat. Touch the bag before handling the processor to reduce the risk of damage.

Work on a flat surface, not the bed, a carpeted floor, other anywhere where static electricity
can build up. The warranty does not cover damage due to electrostatic discharge. Fall and
winter are times when electrostatic electricity is more prevalent.

Discharge yourself by touching a metal door frame, a metal lamp that is properly grounded,
metal furniture, or some metal structure that is not connected to power.

Parts List

● Electronics Experimenters Base Board

● Sensor 1 Board with Ultrasound, light and temperature sensor

● Sensor 2 Board with accelerometer

● 20 F/F Jumpers

● 8 1/2” 4-40 screws

● 16 4-40 nuts

● 4 rubber pads

● Micro USB cable

Developer Kit

The Sten-SLATE ESP Experimenters
Kit includes a 32-bit ARM processor
with at least 512 Kbyte of program
memory and 64 Kbyte of data memory.
The processor operates at 80 MHz.
WiFi is integrated into the processor.

The kit includes three LEDs and a
speaker integrated. There are positions
to install several sensor boards.

There are digital connections that can
also operate up to eight servo motors.

There are two digital signals organized
with power and ground to provide a
convenient access to the I2C bus.

There are another two digital signals
organized also with power and ground
to provide convenient access to the
UART interface. These interfaces will
be explained later.

Power is applied through the USB port
or through an external battery. For
external power, a power switch is made
available and a terminal screw block is
provided to connect external power. Up
to 12 volts can be applied.

The kit is designed to be modular so it
can be more easily integrated.

Developer Kit

Take the four rubber pads and mount
them into the four corners of the SLATE
board. Make sure to not cover any
holes.

 7

Overview

In this section, you will be introduced to the processor board electronics and
the arduino software.

At the end of this section, you will be able to write software, control things and
sense the environment.

Arduino software location: www.arduino.cc

ESP8266 Arduino library information: https://github.com/esp8266/Arduino

http://www.arduino.cc/

 8

Software

The SLATE ESP Experimenters Kit uses the arduino software. This software allows you to write
programs, compile them and upload them to the processor. It also allows you to interact with the
software running on the processor. Only one program can be installed and run at a time. The
processor is small and does not have an operating system. Embedded computers are designed to
perform a specific task and not operate like a desktop computer or laptop.

More information about the arduino software can be found at http://www.arduino.cc

 9

Loading and Configuring
Arduino Software

Download the proper version of the Arduino software from www.arduino.cc. Once downloaded and
installed, start the program. Under the File menu, select Preferences. Find the text entry space to the
right of Additional Board Manager URLS:

Enter the following into the text area

http://arduino.esp8266.com/stable/package_esp8266com_index.json

Click OK.

Select the menu Tools and then Boards: and then Boards Manager.

A window will open. Scroll down until esp8266 is located. Click on it and click Install.

The software will load the compiler for the processor board.

For Mac OSX users, you need to install python 3. Instructions are on page 64.

http://www.arduino.cc/Main/Software

 10

Configuring The Software

Select the “Tools” menu again and then “Board:”.

Select “Generic ESP8266 Module”

Go back to “Tools” menu and select “Reset
Method”. Select “nodemcu”

Nothing else needs to be changed. This completes
setting up for the processor board.

To the right is a representaion of the Tools Menu.
All selections should look like it. Only the Port:
selection may be different. The menu may change
as newer versions of the software become
available. The same setting needs to be set.

Auto Format
Archive Sketch
Fix Encoding & Reload
Serial Monitor
Serial Plotter

Board: “Generic ESP8266
Module”
Flash Mode: “DIO”
Flash Size: “512K (64K
SPIFFS)”
Debug Port: “Disabled”
Debug Level: “None”
Reset Method: “nodemcu”
Flash Frequency: “40MHz”
CPU Frequency: “80 MHz”
Upload Speed: “115200”
Port: “COM3”

Programmer: “AVRISP mkII”
Burn Bootloader

Auto Format
Archive Sketch
Fix Encoding & Reload
Serial Monitor
Serial Plotter

Board: “Generic ESP8266
Module”
Flash Mode: “DIO”
Flash Size: “512K (64K
SPIFFS)”
Debug Port: “Disabled”
Debug Level: “None”
Reset Method: “nodemcu”
Flash Frequency: “40MHz”
CPU Frequency: “80 MHz”
Upload Speed: “115200”
Port: “COM3”

Programmer: “AVRISP mkII”
Burn Bootloader

 11

Selecting COM Port

The Arduino software communicates with the processor board for uploading code and
interaction via a COM port with Windows and a /dev/tty.usbserial-Daxxxxxx with MAC OSX.
Under Linux, the COM port is /dev/ttyUSBx where x is a number.

For Linux, the device driver is already part of the operating system.

MAC OSX should include a driver as part of the operating system.

The next two pages explain how to load the device driver for Windows and MAC OS X.
Administrative privileges are required for installation. Under Windows, you must run the
installation software as an administrator. Under MAC OS X, you will be asked for your login
password.

Plug the Slate into the computers USB port.

12

Windows COM Port

Plug the SLATE into the USB port. If the Serial Port menu does not show any COM
ports try the following: Go to http://www.ftdichip.com/Drivers/VCP.htm. In the table
on the website, locate the row specifying Windows. Click on the link setup
executable and download the software. Right click on the icon labeled CDM
v2.12.00..... and select Run as Administrator in the menu that pops up.
Follow the instructions to install. You have to run the installation program as an
administrator or the driver will not install. Go back to Arduino and select the COM
Port it gives you. Most likely, the COM port will be COM3. If there is more than one
COM port, choose the higher number.

http://www.ftdichip.com/Drivers/VCP.htm

13

Macintosh OS X USB Driver
Installation

Go to http://www.ftdichip.com/Drivers/VCP.htm. Select VCP driver (Virtual COM Port) for
Mac 64 bit.

Download and double click on the file. A window will open showing two packages. Double
click the package for the OS version you have. Follow instructions for
the installation. You do need admin privileges to install. Go back to
Arduino and select the Serial Port: /dev/tty.usbserial-Daxxxxxx The
xxxxxx will be some combination of letters and numbers

http://www.ftdichip.com/Drivers/VCP.htm

 14

Using Arduino

This is the arduino software. The
software will let you enter programs and
upload the code to the processor board.
The large white area is where the code
is entered. The black area below is
where error messages will be displayed
such as when there is an error in the
code or the software cannot upload
code for some reason.

The buttons below the menu have
different functions. The first is called
Verify Code and will compile the code
and check for errors but not upload the
code. The next button will do the same
as the first but also upload the code.
New Program button opens a new copy
of the program allowing you to start
writing another program. Open and Save
are for opening and saving the code you
have written.

Serial Monitor button opens a new
window allowing you to interact with the
processor. The Serial Monitor window
allows the processor to display
information and you to send information.
This will be used quite a bit in this
section.

Verify
Code

Upload
Code

New
Program

Open
Save Serial

Monitor

 15

First Program to Test
Enter the program in the editor on the right.
Do not copy and paste from the pdf file. It
doesn't work. The compiler is case sensitive
so pay attention to capitalized letters. Don't
forget to include a semi-colon after each
statement as shown.

Plug the processor board into the USB port.
Click on the upload Code button to compile
and upload the program. When the status
message at the bottom of the window says
done uploading, click on the serial monitor
button. The Serial Monitor window pops up
with the message being displayed.

Experiment by changing the message. Save
your program. Pick a file name.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 Serial.print(“Hello World”);
}

Serial Monitor Window

 16

What are Functions

A function is basically a set of instructions
grouped together. A function is created to
perform a specific task.

The set of instructions for a function are
bounded by the curly brackets as seen to the
right.

The setup() function is used to initialize the
processor board, variables, and devices.

Objects can include functions. Serial is an
object with several functions. begin() in
Serial.begin() is a function. print() is
another function that is part of the Serial
object.

You will notice that some lines end with a
semi-colon. This is used to identify the end of
an instruction. An instruction can be an
equation or function call.

When you create a function such as
setup(), you do not need a semi-colon.
When you call a function then a semicolon is
needed at the end of the function.

The program is made up of two functions.
setup() function is run at reset, power up
or after code upload only once. It is used to
initialize all the needed interfaces and any
parameters. loop() function is run after the
setup() function and is repeatedly run
hence the name loop.

This program configures the serial interface
to send messages at 115200 bits per second.

The message is “Hello World” and is
repeatedly displayed.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 Serial.println(“Hello World”);
}

Serial.begin() is a function that
intializes the serial interface and sets the
bit rate.
Serial.println() sends the specified
message over the serial interface and
move the cursor to down one line.
delay(500) is a command to stop the
program for 500 milliseconds.

 17

What is in the Software

In the setup() function, it executes the
function Serial.begin(115200);
This function initializes the UART which is
connected to the USB port to allow for
communications.

In the loop() function, it executes the
function Serial.print(“Hello
world”); This function send the text in
quotes to the UART. This is displayed in
the Serial Monitor window.

The other function is called delay().
This function stops the program for a
specified period of time. The unit is in
milliseconds. The code to the write
displays the text every half second.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 Serial.println(“Hello World”);
 delay(500);
}

 18

What are Bits and Bytes

Bits are a unit of information in the computer. It has two states:

State 0 is logic level 0 also known as low and represented in the processor as 0
volts. State 1 is a logic level 1 also known as high and represented in the processor
a greater than 2 volts.

Bytes are a group of 8 bits. This allows values greater than 1 to be processed.
There is a weighting scheme so that numbers can be represented using a byte. The
least significant bit has a weight of zero. 2 to the power of 0 is 1. The most
significant bit has a weight of seven. 2 to the power of 7 is 128. Add up all the
weights of the bits that are set to logic 1 to get the value of the byte.

Example:

10111001 equals 27 + 25 + 24 + 23 + 20 = 185

128 + 32 + 16 + 8 + 1 = 185

Try a couple binary numbers

01100000

10010101

Byte

27 26 25 24 23 22 21 20

 19

What are Bits and Bytes

● Example

● 10111001 equals 27 + 25 + 24 + 23 + 20 = 185

● 128 + 32 + 16 + 8 + 1 = 185

● Try a couple binary numbers

● 01100000

● 10010101

Byte

27 26 25 24 23 22 21 20

 20

Controlling Hardware

 21

Controlling an LED

Take a jumper wire and insert one end
into pin D12. Insert the other end into
pin LED1 as shown in the picture.

Open a new program and enter the
code to the right. Click on the Upload
Code button. You will be asked to save
the program to a file. Pick a name like
blinky and save. The software will then
compile and upload the code.

The LED should start blinking.

void setup()
{
 pinMode(12,OUTPUT);
}

void loop()
{
 digitalWrite(12,HIGH);
 delay(500);
 digitalWrite(12,LOW);
 delay(500);
}

 22

How the Code Works
In the setup() function, the function
pinMode(12,OUTPUT) is used to configure the digital
pin 12 to be an output so it can control the LED. You
always need to configure the digital Pin to be an
output when using it to control something like the
LED.

In the loop() function, digital pin 12 is set high
which causes the pin to generate 5 volts. The LED
turns on. The delay() function halts the program for
500 milliseconds. The next digitalwrite()
command sets digital pin 12 to 0 volts turning off the
LED.

You can think of the digital pin as a light switch. It can
be turned on and off. The computer language uses
HIGH for the on state and LOW for the off state.

Experiment and change the delay settings to blink at
different rates. How fast can you make the LED blink
before you cannot see if blink?

What is an LED?

LED stands for Light Emitting Diode. It is a
semiconductor device that generates light when an
electric current passes through it. Current can only
travel through the LED in one direction. In the wrong
direction, the LED does not light up.

LEDs need the to current flowing through it limited
otherwise it would pull a lot of current on its own and
burn up. A resistor is used to reduce the current
flowing through the LED. A resistor is a device that
limits current flowing through a circuit. A circuit
diagram to the right shows the LED connected to 5
volts.

The LED has an anode and a cathode. When the
anode is at a higher voltage than the cathode, the
LED will conduct current and light up. Do the reverse
and the LED does not light up.

void setup()
{

pinMode(12,OUTPUT);
}

void loop()
{

digitalWrite(12,HIGH);
delay(500);
digitalWrite(12,LOW);
delay(500);

}

 23

Two LEDs

Using the same blinky program, you will
add a second LED. Connect D13 to
LED 2, the yellow LED. Modify your
blinky program to include the extra
code in bold shown to the right.

Click on the Upload Code button. Once
the program uploads, you should have
the red and yellow LEDs blinking back
and forth.

On your own, add the third LED. Pick a
digital pin and connect it to the green
LED.

Change the program to blink each LED
in sequence.

void setup()
{
 pinMode(12,OUTPUT);
 pinMode(13,OUTPUT);
}

void loop()
{
 digitalWrite(12,HIGH);
 digitalWrite(13,LOW);
 delay(500);
 digitalWrite(12,LOW);
 digitalWrite(13,HIGH);
 delay(500);
}

 24

Making Sound

A speaker is a device that can make
sounds. Connect digital pin D14 to the
SPEAKER pin. Start a new program and
enter the code below. To make a sound,
you use the tone() function. The tone
function takes two numbers, the digital
pin number and the tone frequency. Try
the program below and change the tone
frequency. Pick a number between 40
and 5000.

void setup()
{
 pinMode(12,OUTPUT);
 pinMode(13,OUTPUT);
 pinMode(14,OUTPUT);
}

void loop()
{
 digitalWrite(12,HIGH);
 digitalWrite(13,LOW);
 tone(14,2000);
 delay(500);
 digitalWrite(12,LOW);
 digitalWrite(13,HIGH);
 tone(14,1500);
 delay(500);
}

 25

Musical Notes

Musical notes have specific frequencies. Since
the tone() function uses frequency to set the
pitch, you will need to translate notes to
frequencies.

A C note has a frequency of 261 Hz. A D note
has a frequency of 294 Hz.

In the code shown, there are these #define
statements that are used to assign a value to a
capital letter. These are not variables so they do
not take up space. These are constants. Instead
of entering numbers for tones, you can just enter
the musical note. It makes the code more
understandable. Try out the program. Add more
notes and different delays.

#define C 161
#define D 294
#define E 329
#define F 349
#define G 392
#define A 440
#define B 493
#define C2 523

void setup() {
 pinMode(14,OUTPUT);
}

void loop() {
 tone(14,C);
 delay(500);
 tone(14,C2);
 delay(500);
}

 26

Play Music

For this program, you will learn about
data arrays and for() loops. A data array
is a group of variables with the same
name but uses a number to select which
variable is used. Variable note is an
array. It is indicated by the square
brackets after the name. This bracket is
used to specify how many elements or
variables are in the array. For this
program, there are 7 elements. You also
see that the elements are set with the
notes in the curly brackets. There can be
no more than 7 values put into the array.

There is also the dur array. This array is
used to determine how long the note
plays. 4 is for quarter note, 8 is for 1/8
note. A whole note is 1.

The for() loop lets your program loop
through a specific number of time. There
are three parts to the for() loop. The first
part sets the starting condition. It declares
a variable i and sets it to 0. The second
part tests the value of i and if it is not less
than p which is 7, the program exits the
for loop. The last part increments i by 1
each time it loops. All code between the
curly brackets after for() is executed until
i is not less than p.

Notice the noTone() function. This turns
off the tone being generated. A short
delay is added. This allows same notes
playing in a row to be distinct.

Try the program out and see how it plays.
Try other music. You can change the size
of the array. Remember to change the
value of p.

#define C 161
#define D 294
#define E 329
#define F 349
#define G 392
#define A 440
#define B 493
#define C2 523
#define p 7 // number of notes

int note[p] = { C,C,G,G,A,A,G};
int dur[p] = {4,4,4,4,4,4,1};
void setup() {
 pinMode(14,OUTPUT);
}

void loop() {
 for(int i=0;i<p;i=i+1) {
 int t = 1000/dur[i];
 tone(14,note[i]);
 delay(t);
 noTone(14);
 delay(20);
 }
}

 27

Sensors

 28

Mounting Sensors

There are two locations marked SENSOR for mounting sensor modules. They require
screws and nuts to be installed for mounting sensor modules. Eight screws and nuts are
required. Insert the screw through the hole from underneath the board and secure with a
nut on the top side. Repeat for the remaining seven holes.

½ inch screw
and nut

 29

Analog Sensors

This section introduces analog sensors,
a light sensor and a thermal sensor.
These two sensors are variable resistors
that change resistance based on what
they measure.

The SLATE ESP has an analog-to-digital
converter, ADC for short, that converts a
voltage to a value. The SLATE ESP ADC
has a voltage range of 0 to 1 volt. It is a
10 bit ADC which means it generates a
number with a range from 0 to 1023. 0
volts results in a value of 0. 1 volt will
generate a value of 1023. There is a
linear relationship between the voltage
and the value generated by the ADC.
The voltage can be calculated using the
equation below:

 V = ADC / 1023.0

If 0.5 volts is applied to the ADC, the
value generated will be 51..

The Experimenters board has one ADC
input as highlighted in the image. A 1 volt
reference is included at pin V3 for any
sensor circuit that needs it such as the
light and thermal sensor. Pin GND is the
0 volt reference. Pin ADC is the input.

 30

Analog Sensors

The light and thermal sensors are resistive
type sensors. Their resistance changes based
on what they measure. The ADC cannot
measure resistance, only voltage. A voltage
divider can generate a voltage based on the
resistance of the sensor. The only problem is
that the full range of the ADC may not be used
since the resistor divider will not allow a full
voltage swing from 0 to 1 volt.

The thermal sensor is called a thermistor. It's
resistance changes with temperature. Their
nominal resistance is specified at 25C. This
particular sensor is at 10 Kohms at 25C. The
table below shows the resistance at different
temperatures.

The thermistor is resistor R1 as shown in the
circuit. R2 is a 10 Kohm resistor. At 25C, the
thermistor will be 10 Kohm. This divides the 1
volt to 0.5 volts. The ADC will generate 511. As
the temperature goes higher, the resistance
goes lower and the voltage to the ADC
increases. As the temperature goes lower, the
resistance increases and the voltage
decreases.

R1

R2

Battery

Vout

+V

0V

Vout = +V * R2/(R1+R2)

Temperature C Resistance
Ohms

0 32960

5 25580

10 20000

15 15760

20 12510

25 10000

30 8048

35 6518

40 5312

45 4354

50 3588

Thermistor Resistance Table

Voltage Divider Circuit

 31

Thermistor

The plot of resistance versus temperature shows the thermistor does not have a linear
response to temperature. The thermistor table can be entered into a spreadsheet and plotted
using the scatter plot. The voltage can also be added and shown in the plot. The shows the
relationship of voltage out of the voltage divider and resistance versus temperature.

The voltage plot almost looks linear and if a rough temperature is only needed, then a linear
equation can be generated to calculate the temperature based on voltage.

0 10 20 30 40 50 60
0

5000

10000

15000

20000

25000

30000

35000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Thermistor

Thermistor

Voltage

Temperature C

R
e

si
st

a
n

ce

V
o

lta
g

e

 32

Thermistor

For better temperature accuracy, the voltage and temperature can be plotted in the spreadsheet with
the temperature on the Y axis. The spreadsheet can generate a polynomial that can approximate the
curve in the plot. Below is the equation generated.

Temperature = 22.64 * voltage * voltage + 74.6 * voltage – 17.9

This equation will be used in the program on the next page.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

f(x) = 22.64 x² + 74.6 x − 17.9

Thermistor

Temperature vs Voltage

Voltage V

T
e

m
p

e
ra

tu
re

 C

 33

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 volts = (float)a/1023.0;
 float t = (22.64*volts*volts) + (74.6 * volts) – 17.9;
 Serial.println(t,2);
 delay(200);
}

Thermistor

Insert the Sensor module onto the
screws in the left sensor area. Secure
with #4 nuts. Use three jumper wires to
connect the thermistor to the ADC.

Enter the code below and upload and
run it. The result will be the air
temperature. Place a finger on the
sensor and see if the temperature rises.

 34

Light Sensor

The light sensor is a light sensitive
resistor. It's resistance decreases as
the light intensity increases. At 100
lux, the resistance is 5 Kohms. In the
dark, the resistance can reach up to
20 megaohm. It is connected similarly
as the thermistor taking the place of
R1 in the voltage divider circuit.
Voltage will increase as the light
intensity increases and the voltage
decreases as light intensity
decreases. There is no calibration
data for the sensor. It is used as
general light intensity detector and
generally used to detect darkness to
turn lights on.

Enter the code in a new program and
try it out. Use a flash light to shine
light on the sensor and see how the
voltage changes.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0;
 Serial.println(volts,2);
 delay(200);
}

 35

Ultrasonic Sensor

The ultrasonic sensor uses bursts of sound to
measure distance. The sensor transmits a short
40 KHz tone and then measures the time it takes
the tone to be reflected back.

The distance measurement is started by the Trig
pin being pulsed high for at least 10 us. The
sensor will then transmit a very short 40 KHz
tone and wait for the echo to be detected. The
sensor calculates the delay time and generates
a pulse with the width proportional to the delay.
Distance can be calculated by measuring the
pulse width in microseconds and dividing by 58
to get centimeter values.

Trig

Transducer

Receiver

Echo

10us pulse on Trig pin

40 Khz burst signal

Echo from target

Pulse on Echo pin

Delay

distance = pulse width (us) / 58

 36

void setup()
{

Serial.begin(115200);
pinMode(14,INPUT);
pinMode(16,OUTPUT);

}

void loop()
{

unsigned long distance;
digitalWrite(16,LOW);
delayMicroseconds(2);
digitalWrite(16,HIGH);
delayMicroseconds(10);
digitalWrite(16,LOW);
distance = pulseIn(14,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

Ultrasonic Range Sensor

The picture shows where to install the
jumper wires to connect the ultrasonic
range sensor. GND is connected to the
GND pin on the digital port. 5V is
connected to the USB 5V pin. Trigger is
connected to D16. Echo is connected to
D14.

Enter the code below in a new program
and run it. Use a solid object or hand
and move it to and from the sensor. A
ruler can be used to verify the accuracy
of the sensor. It can measure down to 3
centimeters.

 37

Creating a Function

Using the ultrasonic range sensor program, it
will be modified to become a standalone
function. A function is a group of instructions
with a name that can be called from a program.
Functions are useful for where there is an
operation that is used in multiple places in a
program. This helps eliminate the need to
rewrite the same code in different parts of the
program. It also allows the function to be used in
different programs.

Select Save As... under the File menu. Give the
program the name ultrasound_f. Next delete
the function setup() that is highlighted. Also
delete the last two function calls at the end of
the loop() function.

As shown in the lower right, change the void
loop() to the name of the function. Insert the
return command at the end of the new function.

Select Save from the File menu.

void setup()
{
 Serial.begin(115200);
 pinMode(14,INPUT);
 pinMode(16,OUTPUT);
}

void loop()
{
 unsigned long distance;
 digitalWrite(16,LOW);
 delayMicroseconds(2);
 digitalWrite(16,HIGH);
 delayMicroseconds(10);
 digitalWrite(16,LOW);
 distance = pulseIn(14,HIGH);
 distance = distance/58;
 Serial.println(distance);
 delay(500);
}

unsigned long ultrasound()
{
 unsigned long distance;
 digitalWrite(16,LOW);
 delayMicroseconds(2);
 digitalWrite(16,HIGH);
 delayMicroseconds(10);
 digitalWrite(16,LOW);
 distance = pulseIn(14,HIGH);
 distance = distance/58;
 return(distance);
}

 38

Creating a Separate Function
File

Create a new program. Enter the program
shown. Save it with the name ranging. You
will notice the tab for the program is now
named ranging.

Under the Sketch menu, select Add File...
Locate and select ultrasound_f file. You
have to go to the ultrasound_f folder. A new
tab will appear with the ultrasound function.
Compile and upload it.

void setup()
{

Serial.begin(115200);
pinMode(14,INPUT);
pinMode(16,OUTPUT);

}

void loop()
{

unsigned long distance;
distance = ultrasound();
Serial.println(distance/58);
delay(500);

}

Arduino with two tabs.

 39

Conditional Programming

 40

Conditional Programming

Conditional programming is how programs make
decisions. The simplest form is the if() statement. The if()
statement requires an argument. The argument is a
comparison that results as true or false. False has a value
of zero.

 The following are valid comparisons

 a == b true if a equals b

 a > b true if a greater than b

 a >= b true if a greater or equal to b

 a < b true if a less than b

 a<= b true if a less than or equal to b

if(a == b) {
// execute if true
}
else {
// execute if false
}

 41

Conditional Programming

In this example, the program will
monitor the light level and turn on the
LED when it gets dark enough.

Reuse the wiring of the light sensor as
before. Add a jumper to connect D14 to
LED1. Enter the code below and run it.
The voltage threshold may need to be
adjusted depending on the light level in
the room. Adjust it so that the LED is off
with the ambient light. Then cover the
light sensor. The LED should turn on.

At the top of the code is a #define
statement. This assigns a constant to a
name. This is useful if the constant is
used in multiple places. It allows easier
changes by only changing the constant
in one location. It also helps to use a
name that has meaning for its use.

Adjust the THRESHOLD constant until
the program operates properly.

#define THRESHOLD 500

void setup()
{
 Serial.begin(115200);
 pinMode(14,OUTPUT);
}

void loop()
{
 int a;
 a = analogRead(0);
 Serial.println(a);
 if(a < THRESHOLD) {
 digitalWrite(14,HIGH);
 } else {
 digitalWrite(14,LOW);
 }
 delay(200);
}

 42

Conditional Test

Reconnect the thermistor to the ADC. Connect all three LEDs to digital pins. Create a program to do
the following:

Turn on the green LED when at room temperature

Turn on the yellow LED when it is a bit warmer. Select the threshold.

Turn on the red LED when it is hot. Select the threshold.

Turn off the red LED when it is below the hot threshold.

Turn off the yellow LED when it is below the warm threshold.

 43

I2C Bus

 44

I2C Bus

I2C stands for Inter-Integrated Circuit. It is a serial type interface requiring only two
signals, a clock signal and a data signal. The I2C bus is typically used to interface with
sensors and peripheral devices not needing to communicate at high speeds. The
standard data rate is 100 Kilobits per second. Multiple devices can be connected to a
single I2C bus. The processor is the controller and all the connected devices are
peripherals. The processor is also called the master and the peripherals are slaves.
Each slave has a unique address.

The clock signal is labeled SCL. This signal is used to control the flow of the data bits.
The data signal is called SDA. This carries the data serially. The diagram below shows
how a data transfer occurs. The data transfer protocol is for the master to first send out
a device address. This is a 7 bit number followed by a bit indicating if the next byte is to
be written to a slave or read from a slave. The SCL signal toggles for each bit sent.

Processor
Processor

Peripheral
1

Peripheral
1 Peripheral

2

Peripheral
2 Peripheral

3

Peripheral
3

SDA

SCL

 45

I2C Sequence

Every device on the I2C bus has a unique 7-bit address. The accelerometer address is
0x1C. The I2C operation for writing to a register is:

1. Send Start sequence by keeping SCL high and changing SDA from high to low (ST)

2. Send the device address

3. Send the register address

4. Send the stop sequence by changing SDA from low to high while SCL is high first. (SP)

All Bytes sent are acknowledge by the slave.

Every device on the I2C bus has a unique 7-bit address. The accelerometer address is
0x1C. The I2C operation for writing to a register is:

1. Send Start sequence by keeping SCL high and changing SDA from high to low (ST)

2. Send the device address

3. Send the register address

4. Send the stop sequence by changing SDA from low to high while SCL is high first. (SP)

All Bytes sent are acknowledge by the slave.

ST Device Address W

AK

Register Address

AK

Data

AK

SPMaster

Slave

ST
Device

Address
R

AK

Register
Address

AK DataAK

SPMaster

Slave

SP AK
Device

Address
W

 46

IMU

The MPU-6050 is a six degree of freedom Inertial Measurement Unit. It consists of a 3-axis
accelerometer and a 3-axis rate gyroscope. The accelerometer has a settable sensitivity
range of 2Gs to 16 Gs. The rate gyroscope has a settable sensitivity range of 250 degrees
per second to 5000 degrees per second.

The sensor allows you to measure acceleration and rotation in three dimensions. With the
combination of the the accelerometers and rate gyros, orientation can be measured in the
three axis. In the X and Y axis, the absolute orientation relative to earth’s gravity can be
measured. The sensor will measure a range of -180 to +180 degrees.

In the Z axis, the accelerometer cannot be used so there is no absolute reference for the
orientation around the Z axis. The zero angle orientation around the Z axis is established
when the sensor is calibrated. As the sensor is rotated, the angle measurement
accumulates. The measurement will not reset when exceeding -360 or +360 degrees. The
number of rotations can be calculated by dividing the measured value by 360.

All gyros have drift which needs to be calibrated out. The programs later include a calibration
mode. When the program starts, the sensor has to not move at all. The calibration will take
about three seconds and will measure the gyro drifts so they can be subtracted from the
measurements.

In this lesson, the rate gyro will be used to determine orientation. The library includes
functions for calculating the angle of the sensor after it is calibrated. A processing program
will be used to graphically demonstrate the orientation of the sensor.

Sensor Axis Diagram

 47

IMU

Install the sensor board into the second
sensor location as shown. Secure it with
nuts. Connect the jumpers as shown.
Connect from the pins above the I2C label
on the experimenters board.

Connect 3.3V to V+. Connect both GND
signals. Connect D5 to SCL. Connect D4 to
SDA.

Download the library from www.stenat.org
www.stensat.org. This library was modified to
work properly on the ESP8266 SLATE
board. In the Arduino IDE, select the Sketch
menu and then select Include Library.
Select Add .ZIP file. Locate the file and
select it. It will be added to your library. In the
File menu, select Examples then locate
MPU6050_tockn. Select GetAllData. The
program will open in a window.

Before compiling, make the following
changes as shown in the next page:

Line 11, Wire.begin(); => Wire.begin(4,5);

Line 12, mpu6050.begin(); ==>
mpu6050.begin(ACCEL_2G,GYRO_500);

Change line 10 baud rate from 9600 to
115200.

Compile and upload the program.

When done uploading, open the Serial
monitor and make sure the baud rate is set
to 115200. When the program starts, it will
spend about 3 seconds calibrating. Make
sure the sensor is not moving during this
time. It will calibrate right after the code
finishes uploading.

http://www.stensat.org/

 48

GetAllData Program

#include <MPU6050_tockn.h>
#include <Wire.h>

MPU6050 mpu6050(Wire);

long timer = 0;

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

void loop() {
 mpu6050.update();

 if(millis() - timer > 1000){

 Serial.println("===");
 Serial.print("temp : ");Serial.println(mpu6050.getTemp());
 Serial.print("accX : ");Serial.print(mpu6050.getAccX());
 Serial.print("\taccY : ");Serial.print(mpu6050.getAccY());
 Serial.print("\taccZ : ");Serial.println(mpu6050.getAccZ());

 Serial.print("gyroX : ");Serial.print(mpu6050.getGyroX());
 Serial.print("\tgyroY : ");Serial.print(mpu6050.getGyroY());
 Serial.print("\tgyroZ : ");Serial.println(mpu6050.getGyroZ());

 Serial.print("accAngleX : ");Serial.print(mpu6050.getAccAngleX());
 Serial.print("\taccAngleY : ");Serial.println(mpu6050.getAccAngleY());

 Serial.print("gyroAngleX : ");Serial.print(mpu6050.getGyroAngleX());
 Serial.print("\tgyroAngleY : ");Serial.print(mpu6050.getGyroAngleY());
 Serial.print("\tgyroAngleZ : ");Serial.println(mpu6050.getGyroAngleZ());

 Serial.print("angleX : ");Serial.print(mpu6050.getAngleX());
 Serial.print("\tangleY : ");Serial.print(mpu6050.getAngleY());
 Serial.print("\tangleZ : ");Serial.println(mpu6050.getAngleZ());
 Serial.println("===\n");
 timer = millis();

 }

}

 49

IMU

In the example program, the sensor library is included at line 2. Line 3 loads the I2C library. Line
5 creates a sensor object. The argument is Wire which tells the library to use the I2C interface.
This is done to allow multiple I2C buses to be used. Only one is used here.

The timer variable in line 7 is used to track the time and have the display updated sensor data
once a second. Lines 9-14 is the setup function. The serial interface is configued then the I2C
interface. Next the sensor is configured with the accelerometer set to 2G range and the gyro set
to 500 degrees per second rotation rate range. Line 13 calls a library function to calibrate the
gyroscope. The gyroscope has what is called a DC offset or constant offset. This is an error that
all sensors have and can be measured with the sensor not moving. The library subtracts the
offset from all measurements.

Lines 16 – 46 is the loop function. Line 19 determines if a second has passed. If so, the reset of
the code is executed. Line 17 is the function that collects the sensor data. The results are kept
in the library variables. Lines 22-40 display the sensor results Notice that the values displayed
are function calls. mpu6050.getTemp() will return the temperatuer in Celcius.
mpu6050.getAccx() will return the X-axis accelerometer value in Gs and so on. Notice the
values are in floating point and processed from the raw values. Lines 31 and 32 return the
sensor angle in the X and Y axis based on the accelerometer.

mpu6050.getAccAngleX() returns an angle in degrees referenced to the Z and X axis.

mpu6050.getAccAngleY() returns the angle in degrees referenced to the Z and Y axis.

mpu6050.getGyroAngleX() returns the angle calculated by the accumulation of the rate gyro
around the X axis.

mpu6050.getGyroAngleY() returns the angle calculated by the accumulation of the rate gyro
around the Y axis.

mpu6050.getGyroAngleZ() returns the angle calculated by the accumulation of the rate gyro
around the Z axis.

mpu6050.getAngleX() provides the angle around the X axis based on the combination of the
accelerometer and gyro.

mpu6050.getAngleY() provides the angle around the Y axis based on the combination of the
accelerometer and gyro.

mpu6050.getangleZ() provides the angle around the Z axis based on the combination of the
accelerometer and gyro.

These three functions provide the best orientation value of the sensor and can be used to
indicate the orientation of any device it is connected.

 50

Simpler IMU Program

This program is a simpler version of
the example program where only the
X,Y,Z angles are sent over the USB
port.

Enter this program in the Arduino
IDE and upload to the SLATE.
Name the program simpleimu.

Instead of opening the Serial
Monitor, select the menu Tools and
select Serial Plotter. A window will
open and plot three lines as data is
streaming.

Rotate the board on the table and
see how the Z-axis data changes.
Rotate more than 360 degrees.
Notice the plot goes out of range.
Rotate in the opposite direction. The
Z-axis plot should return back into
the plot area.

Do the same for the other two axis.
Notice they only go to +/- 180
degrees. The accelerometer is being
used with the gyro to maintain
orientation information. The
accelerometers are using gravity as
a reference to down. For the Z-axis,
there is no reference. A
magnetometer could be used as a
reference for the Z-axis using the
earth’s magnetic field.

Save this program. It will be used
later.

#include <MPU6050_tockn.h>
#include <Wire.h>

MPU6050 mpu6050(Wire);
long timer = 0;

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

void loop() {
 mpu6050.update();
 Serial.print(mpu6050.getAngleX());
 Serial.print(“,“);
 Serial.print(mpu6050.getAngleY());
 Serial.print(“,“);
 Serial.println(mpu6050.getAngleZ());
 delay(10);
}

 51

Matlab Interface

 52

Matlab Interface

Matlab provides functions for
interacting with devices. The
interface used in the following
example is the USB interface
which appears to be a COM port. It
is the same COM port used for
uploading programs.

The example given here will be a
simple data acquisition program.
The Arduino based processor
board will collect data from the
ADC and send it over the serial
port. The Matlab code will collect
the data and plot it.

A simple control command will be
included to activate or deactivate
the data collection from the ADC.

A single character '1' will be used
to start the sampling and '0' will
stop the sampling.

Begin

Initialize
Serial

Command? Start/
Stop?

Collect
Sample?

Set
Sample

On

Set
Sample

Off

Sample ADC
Send to Serial

YES

YES

NO

NO

1

0

 53

The Code

Arduino Code:

 Variable s is used to turn on and off the
data sampling. It is set to zero to be in the
off state every time the program runs. In
the loop, the the Serial interface is checked
to see if any commands were received.
The single character command is
compared to the two valid options. The
state of operation changes only if a valid
command is received. If data acquisition is
turned on, then the ADC data is collected
and sent to the Serial interface. A delay of
1 ms is needed to not overrun the matlab
program.

Matlab code:

First, variable x is set to an array of 200
elements and cleared to all zeros. Next, the
serial interface is declared as variable s.
Replace COM3 with the serial interface
used to program the Arduino based
processor board. After the serial interface
is declared, the bit rate is set to 115200
bits/second.

fopen() opens the serial interface. This
makes the connection. fprintf() sends what
is between the single quotes to the serial
interface. The single character command
starts the data collections. The while 1 loop
will execute for ever since 1 is considered
true. The for loop will cycle from 1 to 200
collecting samples from the processor
board. After the for loop completes, the
data is plotted. drawnow forces the plot to
be displayed and updated. fscanf() is what
captures the data from the processor
board. '%e' specifies the format which is a
real number that can include a decimal.

int s;

void setup() {
 Serial.begin(115200);
 s = 0; // start/stop flag
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 if(a == '1') s = 1;
 else if(a == '0') s = 0;
 }
 if(s == 1) {
 int b = analogRead(0);
 Serial.println(b,DEC);
 delay(1);
 }
}

x = zeros(200,1);
s = serial('COM3');
s.baudrate = 115200;
fopen(s);
fprintf(s,'1');
while 1

for b=1:200
p = fscanf(s,'%e');
x(b) = p;

end
plot(x);
drawnow;

end

Arduino Code

Matlab Code

 54

Stopping Matlab Program

To stop the code, click on the Pause button. Then click on the Quit Debugging button. In the
command window enter fclose(s) and press enter. This properly stops the code and closes
the serial interface. If this is not done, the program cannot be rerun. If an error indicating the
serial interface is not available, restart matlab.

 55

Multiple Variables

Reconnect the IMU and upload the IMU
code called simpleimu. Three values will
be generated per line. The following
Matlab code will show how to capture
three values.

Three arrays are created to hold the X, Y
and Z values from the accelerometer. p is
assigned values acquired by fscanf().
Notice that there are three %e in the
function. This tells fscanf() to acquire
three values. p becomes a 3 element
array. The x,y,z arrays are filled with the
acquired data. Three plots are displayed
showing the 200 data points collected for
each axis. At 100 samples a second, it
will take 2 seconds for the plot to
generate and will update in 2 second
intervals.

x = zeros(200,1);
y = zeros(200,1);
z = zeros(200,1);
figure;
s = serial('COM1');
s.baudrate = 115200;
fopen(s);

while 1
 for b=1:200
 p = fscanf(s,'%e, %e, %e');
 x(b) = p(1);
 y(b) = p(2);
 z(b) = p(3);
 end
 subplot(3,1,1);
 plot(x);
 subplot(3,1,2);
 plot(y);
 subplot(3,1,3);
 plot(z);
 drawnow;
end

Matlab Code

 56

Python

 57

Python IDE

Python is an interpreted language. This means that a compiler is not used to generate a
executable file. Instead, the python program interprets the written program directly. This
lesson assumes basic knowledge of python. You can learn the basics of python at
www.learnpython.org

There are a few ways to write python programs. The method shown here is very simple and
straight forward. This lesson will introduce you to the pygame library and the socket library
that will be used to interact with the SYST101 and SYST395 kits.

Both Windows and Mac OS X will be covered.

For Windows, it is assumed Windows 10 or Windows 7 is being used. Python version 3.8.2
will be used.

Go to www.python.org/downloads/release/python-374/

Scroll down to Files and select Windows x86-64 executable installer.

Once downloaded, start the installer program. At the start windows, select Add Python 3.8 to
Path then click on Install Now. Python will now install and show up in the Start menu. Close
the window when the installation has completed.

In the start up menu, select Windows Powershell and select Windows Powershell. Do not
select the ISE version.

In the Powershell, type pip3 install tk and press Enter. This will install the TK library for
Python. Once completed, exit Windows Powershell. This completes the installation. To start
Python, select Python IDLE in the Start menu.

http://www.learnpython.org/
http://www.python.org/downloads/release/python-374/

 58

Python For Mac OS X

It is assumed the latest Mac OS X release is being used. Go to
www.python.org/downloads/mac-osx

Locate python 3.8.2 and select Mac OS 64-bit installer.

The installer will be downloaded. Once downloaded, double click on the program and it will go
through the installation process. Once installed, the Python 3.8 will be located in the Application
folder. Open the Python 3.8 folder and you can double click on IDLE.app to start Python.

To install the TK library, open the terminal application. In the terminal application enter the following:

pip3 install tk and press Enter.

The library will be installed.

http://www.python.org/downloads/mac-osx

 59

Python IDLE

The Python IDLE is a python shell. You can enter python commands and and they will execute
immediately.

Start Python IDLE. At the >>> prompt, enter the command:

Equations can be entered and Python will generate the answer:

Python uses indentation to define a block of code. This means all code indented after an if
statement, while statement or other conditional statement will be executed.

After entering the above, press enter again. The commands will execute.

Here is a while loop:

You can stop the while loop by pressing <Ctrl> and C keys.

The IDLE will also let you create new programs using an editor. Select menu File and New. An
editor will open and you can enter a python program. Try the program above with the while loop.
Save the file. You will be prompted for a name. By convention, use .py for the file name extension.
Once saved, select menu Run and Run Module. Press CTRL and C to stop the program. Now you
should have a basic understanding on using the IDLE.

>>>print(“Hello world”)
Hello world

>>>5+3
8

if 10 > 5:
print(“10 is larger”)
print(“Second line”)

while 1:
print(“this is a loop”)

 60

Basic Python

Variables are used to store values or strings.
You do not need to declare what type of
variable it is. It is automatically determined
when a value is assigned. Variables can
change types by assignment. Variables must
start with a letter. It cannot start with a
number. Variables can only be made up of
letters, numbers and _.

Math operations are simple in Python. Just
use equations.

Notice the # sign and the text to the right.
This is a comment. Comments are useful to
explain what the code is supposed to do.

Variable and values can be compared with
each other. Python provides multiple ways to
do comparisons

== is equal

!= is not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

Enter the code into a program and run it. You
can change the values of the variables and
see how execution changes.

a = 5
b = “Fred”
print(a)
print(b)
print(a,b)

a = 5
print(a)
a = “Fred”
print(a)

a = 5 + 6 # addition
b = 12.43 # floating point
c = b – 3.14 # subtraction
dog = 45.834 # assignment
cat = dog * b # multiplication
dd = cat / a # division

a = 45
b = 32
if a > b:

print(“a is greater than b”)
if a < b:

print(“a is less than b”)
if a == b:

print(“a is equal to b”)
if a != b:

print(“a is not equal to b”)

 61

Rules of Python Coding

When indenting, it is very critical to use the same number of spaces otherwise the code will not be
interpreted correctly. Indented code is used to identify code associated with while, for, if and
functions. Tabs and spaces are not interchangeable and will cause program errors or incorrect code
execution. Using the IDLE editor will help keep the indentation uniform. Problems can occur if you
import code from elsewhere and tabs and spaces are not used consistently.

 62

First GUI Program

The Tk or Tkinter library will be used for creating a
graphical user interface in the following example
programs. Tkinter treats all user interfaces called
widgets and graphical components as objects.
Widgets includes buttons, pull down menus. radio
buttons, text entry, selectors, sliders and canvases.
Each widget can be customized in size, color, etc.

The first program will introduce buttons and the
canvas. The buttons are clicked on with a mouse
and the canvas is an area to render graphics.

The black region is the canvas and the two buttons
are stacked below the canvas.

When clicking on either button, the click action will
execute the corresponding function.

The two rectangles rendered in the canvas are also
objects. They can be created and assigned to a
unique variable. This will allow the rectangles to be
modified later. In this example, the color is modified.

Note that the graphic objects are rendered in order
of code execution. A graphic object can be on top of
another. Modifying the object does not change which
is on top.

Widgets are stacked in order of execution from top
to bottom using the pack() function. There are other
window managers to allow more flexible layouts.

 63

TK Library

Tk is a library that allows you
to create a graphical user
interface. It includes many
different widgets such as
buttons, menus, text entry,
lists and so on. It also
provides a canvas widget that
allows for rendering graphics.

The code to the right creates
a program with two buttons
and a canvas to render
graphics. When any of the
buttons are pressed, a
corresponding function is
called.

Two rectangles will be
created and rendered in the
canvas area. When you click
on a button, the color of the
corresponding rectangle will
change color.

At the top, the Tk library also
called tkinter is imported. The
way it is imported allows the
functions to be called more
easily.

top = Tk() creates the
window for the GUI. The
variable top relates to the
window created. Multiple
windows can be created and
each will need their own
name.

Next, two variables are
declared to indicate the color
state of the rectangles.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(green_rect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

 64

TK Library

Next, the canvas widget is
created with a black
background, with 800 pixels
in the X direction and 400
pixels in the Y direction. The
first argument specifies the
window the canvas is to be
placed.

Skip the two functions for
now.

Two rectangles are created
and given variable names
rrect and grect. Graphics
rendered are objects and can
be later modified. The
numbers in the arguments
are the top left corner X and
Y and the bottom right corner
X and Y locations. The fill
parameter sets the color of
the rectangle. Notice the c. in
front of the create function.
This makes the rectangles
get rendered in the canvas
assigned to variable c. You
can have more than one
canvas.

Two buttons are created. The
first argument is the window
to place the buttons. The
argument text sets the text in
the button. The argument
command tells what function
to execute when the button is
clicked.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(green_rect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

 65

TK Library

At the bottom of the code,
there are three lines that tell
the window manager to
display the widgets. The
pack() function will pack the
widgets in the window in a
vertical direction from top to
bottom in order of the code.

The last line starts the loop
that operates the widgets.
The button click will only be
detected when
top.mainloop() is executed.
The program stops when you
close the window.

Nothing executes after
mainloop(). This function
manages the widgets and
calls the related functions
when the widgets are
activated. This is a type of
event based programming
where actions occur when
events are detected.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(green_rect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

 66

TK Library

Functions in python are
declared with the def
statement. The name of the
function and ends in colon. All
instructions for the function
must be indented as shown.

The statement global tells
python the variable used is
not localized but the same
one used in the main
program. Python will
automatically declare any
variables created or
referenced inside a function
as local. This means you can
use the same variable name
in the main part of the code
and in the function and they
will be completely
independent. The variable
related to Tk are global by
default.

The function checks the state
of the toggle_red or green to
determine the color of the
rectangle. If it is zero, the
color is set to red or green
and the toggle variable is
changed. This allows tracking
of the state of the rectangle
color. The functions are called
only when the button is
clicked.

The function c.itemconfig()
lets you change the state of
any graphic object you put
into the canvas. In this
example, the color of the
rectangle is changed.

Save the program and call it
buttons.py. It will be used
later.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(green_rect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

 67

Tk Canvas

In this example, you will use a
mouse to draw on the canvas.

There are two functions in this
program, one to paint and the other
to clear the screen.

top.title() fucntion Changes the title
of the window at the top.

The Canvas is created as before.
w.bind() is used to capture mouse
events when the mouse is over the
canvas. The first one is <B1-
Motion> which is used to call the
paint function. When the left button
is pressed and the mouse is moved,
the paint function will be called
repeatedly until motion stops and
the button is released. The
w.bind(“<Button-3>”, clear) is
used to detect the click of the right
button. The clear function is called
any time the right button is clicked
while the mouse is over the canvas.

A new widget in the code is the
Label. This is used to place a text
label in the window. It is placed
below the canvas due to the order
of the pack() functions.

The paint() function renders a small
red circle each time it is called at the
mouse location. The event passes
mouse information into the variable
event. The event variable is an
object that contains the X and Y
position of the mouse.

from tkinter import *

canvas_width = 500
canvas_height = 300

def paint(event):
 color = "#ff0000"
 x1, y1 = (event.x - 1), (event.y - 1)
 x2, y2 = (event.x + 1), (event.y + 1)
 w.create_oval(x1, y1, x2, y2, fill = color)

def clear(event) :
 w.create_rectangle(0,0,canvas_width,canvas_height,fill='black')

top = Tk()
top.title("Painting using Ovals")
w = Canvas(top,
 width=canvas_width,
 height=canvas_height,bg='black')
w.pack()
w.bind("<B1-Motion>", paint)
w.bind("<Button-3>",clear)

message = Label(top, text = "Press and Drag the mouse to draw")
message.pack()

mainloop()

The link below provides more information on how to link
events. Any object such as buttons and labels can have
events attached. Even the top object can have events.
Events are not limited to the mouse, keyboard inputs can
also be detected.

https://effbot.org/tkinterbook/tkinter-events-and-bindings.htm

 68

Graphical Interface

In this section, you will learn how to
build a simple graphical user
interface to control two LEDs through
the USB port. Reuse the two LED
circuit from the BASIC Circuits
lesson. Two buttons will be created
to control the two LEDs. A new
prorgram will be created in
Processing to command the SLATE
and a new program for the SLATE
will be created to accept and process
the commands.

 69

Graphical Interface

The Arduino program will look for a
single character command from the
serial interface over the USB port and
process it. It first checks if a command
character has been received. Once
received, it will read the character and
then use the switch() function to
determine which command was
received and turn the appropriate LED
on or off.

Upload this to the Experimenters
board. Save the program with the file
name RedGreenSerial.

Open the serial monitor. Type each
letter in the serial monitor and press
the Enter key. The program should
respond to the letter selected. Make
sure to use caps.

void setup() {
 Serial.begin(115200);
 pinMode(12,OUTPUT);
 pinMode(13,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case 'F' : digitalWrite(12,HIGH);
 break;
 case 'B' : digitalWrite(12,LOW);
 break;
 case 'L' : digitalWrite(13,HIGH);
 break;
 case 'R' : digitalWrite(13,LOW);
 }
 }
}

Arduino Program

 70

Graphical Interface

We will reuse the
program buttons.py.

In order for the python
program to talk to the
SLATE board, a new
library needs to be
added.

Open a terminal or
powershell. Enter the
command:

pip3 install pyserial

You do need to be
connected to the
internet for the library to
be installed. Once
completed, you can
start writing the code.

The highlighted lines
are where the new
serial code will be
added.

The serial interface is
opened and configured
to operate at 115200
baud. Specify the COM
port used by the
Arduino software.

from tkinter import *
import serial

top = Tk()

toggle_red = 0
toggle_green = 0

s = serial.Serial("COM4",115200)

c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.write(b'F')
 else:
 color = 'gray'
 toggle_red = 0
 s.write(b'B')
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.write(b'L')
 else:
 color = 'gray'
 toggle_green = 0
 s.write(B'R')
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

Python Program

 71

Graphical Interface

s.write() is the function
that writes the
command byte to the
SLATE. Notice the
character being sent is
preceded with the letter
b. This converts the
character which is
automatically in unicode
 to a byte character.

Python 3 handles all
strings as unicode
which is 16-bits long.
The serial interface
cannot support that so
the string needs to be
converted to an 8-bit
character.

Notice the last two
pack() functions. The
argument added will
make the two buttons
be positioned at the
same level with the
RED button the left and
the GREEN button on
the right.

Save the program as
button_serial.py.

from tkinter import *
import serial

top = Tk()

toggle_red = 0
toggle_green = 0

s = serial.Serial("COM4",115200)

c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.write(b'F')
 else:
 color = 'gray'
 toggle_red = 0
 s.write(b'B')
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.write(b'L')
 else:
 color = 'gray'
 toggle_green = 0
 s.write(B'R')
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

Python Program

 72

WiFi

The WiFi integrated in the processor
provides a wireless way to communicate
with the processor. The processor will be
configured as an access point. This
means it becomes a local network where
your laptop connects. It is also possible
to have a tablet connect to the
processor. In this lesson, you will learn
how to control digital pins. This will
require you to write code on the laptop.

This drawing shows how everything is
interconnected. The control program
runs on the laptop. The laptop WiFi
connects to the processor board WiFi.
The control program sends commands
over the WiFi to the processor board.
The Arduino program interprets the
commands and executes them.

Control
Program

Arduino
Program

wireless link

 73

What is WiFi

WiFi is a local area wireless computer network. It is also known as wireless local area
network. WiFI is a standard for allowing computers to interact with each other using radio
signals. A wireless access point is a device that connects a wireless network to a wired
network. It can also provide a local isolated network not connected to the internet or other
wired network. Access points usually have a network router and can provide network
addresses or IP addresses to any device that connects.

● SSID – is a unique identifier for the WiFi network. It can have up to 32 characters and
is case sensitive. This allows multiple WiFi access points in the same area without
interfering with each other.

● IP Address – is the internet protocol address assigned to each device on the network.
There are two standards, IP-4 and IP-6. IP-4 is used here. The address consists of four
sets of numbers separated by a decimal point. Each number has a range of 0 to 255.
Example 192.168.1.10.

● DHCP – is Dynamic Host Configuration Protocol. This protocol allows a WiFi router to
assign an IP address to any device that connects to the WiFi network. This is done
automatically.

● TCP – is Transmission Control Protocol. This is one of the main network protocols used
by any device on any WiFi network or the internet. The protocol enables two devices to
establish a connection to each other and exchange data. The protocol guarantees
delivery of data and that the data is delivered in the same order sent. The sender sends
a data packet, when the receivers gets the packet, it sends an acknowledgment If the
receiver doesn’t receive the packet, the sender will send again after a time out period.

● UDP – is user datagram Protocol. This protocol is a stateless protocol. No connection
needs to be made and packets received are not acknowledged. The sender just sends
a packet to an IP address and port. There is no guaranteere the receiver actually
received any packets. Data packets can be sent much more quickly because there is
no handshaking.

There are two parts to the WIFI operation. Configuration which sets up the module to operate
properly. Data operation where the module receives data and can send data. The WIFI
module will be configured to operate as an access point. This allows another computer to
connect to the module and communicate with the module. More than one WIFI access point
can be in the same area and operate independent of each other as long as their SSID are
different. In this lesson, the WIFI module will be configured as an access point and allow TCP
connections.

 74

Remote LED Control

In this example, you will control the red
and green LEDs using TCP packets.
This example will require a program on
the processor board and on the laptop.
The processor board program will wait
for the laptop to connect via WiFi
connection and interpret the
commands. The laptop program will
detect certain keys on the keyboard
being pressed and send commands to
the processor board.

NOTE:

Some things to remember when
uploading code to the SLATE. Each
time code is uploaded, any network
operation is stopped. After uploading
code, you will need to reconnect your
laptop WiFi to the SLATE access point.
Windows may show the laptop is still
connected but it really is not.
Disconnect and connect again. Any
time you upload code to the SLATE,
the access point software stops
functioning and Windows will have
stale data about the connection.

If you use the menu Include Library to
add the WiFi to the code, a whole
bunch of include statements will be
added. Remove all the ones except
what is shown in the code in this
document. Some of those include files
can cause issues with compiling and
generate code that doesn’t execute
properly.

 75

WiFi Configuration

First thing to do is include the ESP8266WiFi
library by adding the include statement to the
top of the program. Some items need to be
declared. A WiFiClient object needs to be
created. This allows the code to get commands
from the laptop and send telemetry.
WiFiServer object needs to be created so the
laptop can connect and and send data to the
Experimenters Kit. This allows the kit to
receive connections. When creating the
WiFiServer object, the network port is
selected.

A character array is created for holding the
commands sent by the laptop. For now, the
first character in the array will be the
command.

WiFi.mode() is used to configure the operating
mode of the WiFi interface. WIFI_AP
parameter configures the WiFi interface to
operate as an access point where it will have a
default address of 192.168.4.1 and assign any
device connecting to it a different address.

Last operation is to set up the WiFi as an
access point. WiFi.softAP() will set up the
Experimenters Kit as an access point with the
SSID specified. If a password is desired then
the format is:
WiFi.softAP(“ssid”,”password”);

After the access point is configured, the server
is started. This implements the ability for
clients to connect to the kit.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

unsigned char cmd[6];

void setup()
{
 Serial.begin(115200);
 pinMode(14,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 server.begin();
}

void loop()
{
}

Add the loop() function to the program if
it isn't already included. Upload the
program and let it run. On your
computer, look up the available wireless
networks and see if the one you named
appears on the list. It may take a little
while since the laptop OS checks for
available networks at some interval of
seconds. If it appears, try connecting. If
you include a password, you should be
prompted to enter a password.

Arduino Program

 76

Command Processing

A unique byte value is required to differentiate the LEDs. The table below shows the
commands for controlling the LEDs. A single letter will represent each action.

In the loop() function, two things need to be checked. Has a client connected to the
processor? Has a command been received? One big rule about writing code. No infinite loops
in the loop() function. This will cause the processor to crash. It needs to enter and exit the
loop function repeatedly or execute a delay() function.

The first thing that is checked is if a client is connected to the processor. (2) The object client
is assigned to a client that has connected. If no client has connected then the client object is
empty or null. (3) The if() statement checks if the client object is null or not. The result of the
if() statement is always true if the variable is not empty or null. If a client has connected, (4)
the statement Connected will be displayed on the serial monitor.

(5) A while() loop is created to process all commands while the client is connected. As long
as the result of client.connected() is true, the code inside the while() loop will be executed.

 1 void loop() {
 2 client = server.available();
 3 if(client) {
 4 Serial.println(“Connected”);
 5 while(client.connected()) {
 6 while(!client.available()) {
 7 if(!client.connected()) break;
 8 delay(1);
 9 }
10 char a = client.read();
11 switch(a) {
12 case 'F' : digitalWrite(14,HIGH);
13 break;
14 case 'B' : digitalWrite(14,LOW);
15 break;
16 case 'L' : digitalWrite(16,HIGH);
17 break;
18 case 'R' : digitalWrite(16,LOW);
19 break;
20 }
21 }
22 }
23 }

Action Command
Red LED On F
Red LED Off B
Green LED On L
Green LED Off S

Arduino Program

 77

Command Processing

Line (6) is where the code is looking for any commands sent to the Experimenters Kit. It
works the same as Serial.available(). The while() loop here executes as long as there are no
commands being sent. It does two things. First, it checks to make sure a client is still
connected otherwise the while() loop will get stuck forever. Second, a delay() function is
executed. This allows the processor to multi-task and handle WiFi operations. If the client
disconnects, the break causes the code to exit the the while() loop.

After a command has been received, the code exits the while loop and then the command
byte is read. (10) Reading a byte from the client is the same as reading a byte from the serial
interface. (11 – 20) The command is then checked in the switch() statement. The switch
statement allows a variable to be compared against a list of values. The values are listed
after the case statement. If the value matches, the code after the case statement is
executed.

A break statement is needed to exit the switch statement otherwise all code after the
matched case will be executed.

 1 void loop() {
 2 client = server.available();
 3 if(client) {
 4 Serial.println(“Connected”);
 5 while(client.connected()) {
 6 while(!client.available()) {
 7 if(!client.connected()) break;
 8 delay(1);
 9 }
10 char a = client.read();
11 switch(a) {
12 case 'F' : digitalWrite(14,HIGH);
13 break;
14 case 'B' : digitalWrite(14,LOW);
15 break;
16 case 'L' : digitalWrite(16,HIGH);
17 break;
18 case 'R' : digitalWrite(16,LOW);
19 break;
20 }
21 }
22 }
23 }

Action Command
Red LED On F
Red LED Off B
Green LED On L
Green LED Off R

Arduino Program

 78

Control Software
Open button_serial.py
and save it to a new
name such as
button_tcp.py.

Replace the import
serial with import
socket. This loads the
network socket library.

Replace the line that
opens the serial port
with the
socket.socket()
function. This function
sets of the network
connection to be TCP.
SOCK_STREAM is the
parameter that specifies
TCP protocol.

Next, establish the
connection with
s.connect(). Notice the
IP address and port are
a tuplet type value.

Replace the s.write()
functions with
s.sendall().

Load the SLATE board
with the software and let
is start up. Connect to
the SLATE access point
then run the python
program.

Python Program

from tkinter import *
import socket

top = Tk()

toggle_red = 0
toggle_green = 0

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((‘192.168.4.1’,80))
c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.sendall(b'F')
 else:
 color = 'gray'
 toggle_red = 0
 s.sendall(b'B')
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.sendall(b'L')
 else:
 color = 'gray'
 toggle_green = 0
 s.sendall(B'R')
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

 79

UDP Connection

To use the UDP protocol, modify the SLATE
program as shown to the right. Another
include file is required for UDP. The client
has been replaced with a udp object. The
cmd array has been increased in size to
support possible large packets.

In the setup, the only change is replacing
server with udp and specifying the port
number.

In the loop, the program looks for a UDP
packet. If there is one, the size is returned
or zero for no packet. The if(packetsize) is
true when packetsize is not zero. The
packet is read and then the first byte of the
array is extracted. The rest of the code is
not changed.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

WiFiUDP udp;

unsigned char cmd[256];

void setup()
{
 Serial.begin(115200);
 pinMode(14,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 udp.begin(80);
}

void loop()
{
 int packetsize = udp.parsePacket();
 if(packetsize) {
 udp.read(cmd,256);
 int a = cmd[0];
 switch(a) {
 case 'F' :
 digitalWrite(14,HIGH);

 break;
case 'B' :

 digitalWrite(14,LOW);
 break;
case 'L' :

 digitalWrite(16,HIGH);
 break;
case 'R' :

 digitalWrite(16,LOW);
 break;

 }
 }
}

Arduino Program

 80

UDP Connection
To use UDP, replace
SOCK_STREAM with
SOCK_DGRAM to
specify the UDP protocol.

Delete s.connect() since
UDP protocol does not
require connecting to a
server.

Add a variable address
and assign it the tuple
with the IP address and
port number.

Replace the s.sendall()
functions with
s.sendto(). The
s.sendto() function
requires the destination
address.

Load the SLATE board
with the software and let
is start up. Connect to
the SLATE access point
then run the python
program. The program
should operate the same
way just using a different
protocol.

Python Programfrom tkinter import *
import socket

top = Tk()

toggle_red = 0
toggle_green = 0

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.sendto(b'F',address)
 else:
 color = 'gray'
 toggle_red = 0
 s.sendto(b'B',address)
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.sendto(b'L',address)
 else:
 color = 'gray'
 toggle_green = 0
 s.sendto(B'R',address)
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

 81

Sending Data

In this section, you will be shown how to send data from the SLATE to the a python program. The
python program will receive the data and plot it in real time. To plot data, the matplotlib library will
be used. This library work similar to Matlab plotting functions.

The first version will show how to collect data over the serial interface and plot it. The second
version will show how to collect data over WiFi and plot it.

 82

Sending Data

The IMU program from earlier will be
used for this section. The IMU program
generated orientation in degrees for the
three axis.

Reconnect the IMU as shown.

 83

Sending Data

The program from the IMU section will be
reused as is. The code is shown to the
right. The only change in the code is
changing the delay to 10 milliseconds
instead of 100 ms at the end of the
program. The python program can handle
higher data rates.

For python, a new library needs to be
added. Open a terminal or powershell
and execute the programs below.

pip3 install matplotlib

For more information on matplotlib, go to
https://matplotlib.org/

Arduino Program

#include <MPU6050_tockn.h>
#include <Wire.h>

MPU6050 mpu6050(Wire);
long timer = 0;
char buf[64];

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

void loop() {
 mpu6050.update();
 Serial.print(mpu6050.getAngleX());
 Serial.print(“,“);
 Serial.print(mpu6050.getAngleY());
 Serial.print(“,“);
 Serial.println(mpu6050.getAngleZ());
 delay(10);
}

https://matplotlib.org/

 84

Sending Data

This python program will receive data from
the serial interface and plot the X,Y,Z data
from the IMU as the data becomes
available.

Three libraries are imported. First is the
matplotlib library. Notice the as plt. This
renames the library to plt so there is less
typing. The second matplotlib library is to
support real time updates of the plots.

Line 5 creates a figure. This will be
window that contains the plot. Line 6 adds
a plot to the figure. There is only one plot.

Line 8 sets the number of data points to
be plotted. Line 9 declares a variable to
hold the Y scale of the plot. The IMU is
operating at 2 G range.

Line 11 fills in the x-axis values from 0 to
199. Line 12, 13, 14 fill arrays with zero of
length 200. Each of the arrays will hold
the IMU X, Y, Z values.

Line 15 sets the Y scale for the plot using
the variable value.

Line 16 opens the serial port.

Line 17 declares a line plot for the X
value. Line 18 does the same for the Y
value and line 19 does the same for the X
value. Each data plot will be plotted in the
one plot in the figure. The name of the plot
is ax.

Lines 20 to 22 set up the plot labels. Line
23 makes the data legend visible.

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('IMU')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()
24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8')
28 c = b.split(',')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

Python Program

 85

Sending Data

Lines 25 through 41 are for the function
animate. This function is called repeatedly
to update the plot. Variables i,xa,ya,za are
passed to the function. variable i is
automatically passed and provides a
count update. It is not used.

Line 26 reads data from the serial
interface. If data is not available, the
program halts until it becomes available.
The received data is a byte array stored in
variable a.

Line 27 converts the byte array into a
string which uses unicode. Python 3
works with strings so the byte array needs
to be converted.

https://en.wikipedia.org/wiki/UTF-8

Line 28 splits the received data into
individual X, Y, Z values. The data is
separated by a space. the split() function
argument is the character that is used to
separate the values.

Line 29 verifies there are three values.
Some times the program will start reading
the serial interface in the middle of data
being sent and not all the data is received.
This makes sure all three values have
been received so the program will not
crash.

Lines 30 to 32 add the data to the arrays.
Since the split values are still strings, the
strings need to be converted to floating
point values.

Lines 33 to 35, trim the arrays back to 200
values removing the oldest value.

Python Program1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('IMU')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()
24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8')
28 c = b.split(',')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

https://en.wikipedia.org/wiki/UTF-8

 86

Sending Data

Lines 36 to 38 update the plot data by
reloading the linex,liney,linez with the
updated arrays.

The updated arrays are returned in line
39.

Line 40 and 41 handle the situation where
data was not in the proper format. The
non updated linex,liney, linez are
returned.

Line 42 sets up the real time plotting. The
first argument identifies the figure to be
updated. The second argument is the
function that does update the data. The
third argument specifies the data arrays
the animate function will use. The interval
argument specifies how fast to animate
the plot. The blit=True accelerates the
plotting so it can keep up with the data.

interval is set to 1 millisecond. This is
faster than the data being generated. This
is done so that the program does not lag
behind the data. The readline() function
will control the speed of the plotting based
on the rate the data is received.

Line 46 makes the figure with the plot
visible.

Python Program1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('IMU')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()
24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8')
28 c = b.split(',')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

 87

Sending Data over WiFi

In this section, the accelerometer data will be sent to the python program over WiFi using a UDP
network connection. Remember a UDP connection does not require the SLATE to make a
connection to a computer. In this example, the python program will operate as a server and listen for
UDP packets.

 88

Arduino Code

The setup code will be similar to the
original accelerometer code except with
the addition of configuring the WiFi.

The ESP8266WiFi.h include file is added
to the top of the code. The WiFiUdp.h
include file is also added.

The udp object is declared to send and
receive UDP packets.

The variable send_data is declared and
set to zero. This will be used to indicate
when a packet is received from the python
program.

The remote variable is declared as an
IPAddress type variable. This will be used
to store the IP address of the computer
running the python program.

The variable buf will hold the data to be
sent to the python program as a character
array.

In the setup() function, the I2C interface is
configured as before and the WiFi if
configured. Last, the accelerometer is
configured as before.

A UDP port is declared so the SLATE can
get a packet from the python program and
acquire the IP address to send data.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include <MPU6050_tockn.h>
#include <Wire.h>

WiFiUDP udp;

int send_data = 0;
IPAddress remote;
char buf[32];

MPU6050 mpu6050(Wire);

void setup() {
 Wire.begin(4,5);
 Serial.begin(115200);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“SSID name”);
 udp.begin(10000);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

Arduino Program

 89

Arduino Code

In the loop() function, the udp
port is checked for any UDP
packet from the python program
if a packet has not been received
before. The contents do not
matter for this program. The
purpose is to acquire the IP
address of the computer the
python program is running on.
When a packet is received, the
send_data variable is set to 1
and the IP address is captured.

When the program has captured
the IP address and send_data is
set to 1, the program will then get
the accelerometer data and send
it to the python program.

The snprintf() function format
the data into a character array
that can be read by a person.
The values are converted into an
ASCII string. The first parameter
is the character array to store the
string. The second parameter is
the size of the character array.
The third parameter specifies the
formatting of the string. After that,
the rest of the parameters are
the variables that are used to put
values in the string.

To send a UDP packet,
udp.beginPacket() is required to
specify the IP address and
network port. udp.print() fills the
packet with the contents. Multiple
udp.print() statements are
allowed. The packet is sent when
udp.endPacket() is executed.

void loop() {
 int reg[6];
 int i;
 if(send_data == 0) {
 int ps = udp.parsePacket();
 if(ps > 0) {
 send_data = 1;
 remote = udp.remoteIP();
 }
 }
 if(send_data == 1) {
 mpu6050.update();
 float gx = mpu6050.getAngleX();
 float gy = mpu6050.getAngleY();
 float gz = mpu6050.getAngleZ();
 snprintf(buf,32,”%f,%f,%f\n”,gx,gy,gz);
 udp.beginPacket(remote,10000);
 udp.print(buf);
 udp.endPacket();
 delay(10);
 }
}

Arduino Program

 90

Python Code

The same plotting python
program will be modified to
use the network socket. The
UDP protocol will be used.

Line 3 is modified to import
the socket library instead of
the serial library.

Line 16 sets up the type of
network connection to be
UDP. Line 17 establishes a
connection to the SLATE.
This is done to get the local IP
of the device making the
connection. There can be
more than one network
device. Line 18 gets the local
IP address of the host
computer that the python
program is hosted. Line 19
closes the network
connection.

Line 20 sets up the UDP
network type again. Line 21
tells the program to start
listening to the network port
on the local IP address.

Line 22 sends a packet to the
SLATE. This allows the
SLATE to get the IP address
of the host computer running
the python program.

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as anim
3 import socket
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
17 s.connect((‘192.168.4.1’,80))
18 localip = s.getsockname()[0]
19 s.close()
20 s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
21 s.bind((localip,10000))
22 s.sendto(b‘start’,(‘192.168.4.1’,10000))

Python Program

 91

Python Code

Lines 23, 24 and 25 create plots for
each axis of the IMU. The object ax
refers to the one subplot. Any plot
functions to the same object gets plotted
on the same subplot.

Lines 26 to 28 set up the labels. Line 29
makes the legend visible.

Lines 31 through 47 are the same as
before. The only change is line 32. It is
changed to read a UDP packet that has
been received. If none has been
received, the program waits here. Notice
the function returns two values. The first
is the packet contents into variable a.
The second is the IP address and port
from the SLATE.

The rest of the program is not changed.

23 linex, = ax.plot(xs, xa,label='X')
24 liney, = ax.plot(xs,ya,label='Y')
25 linez, = ax.plot(xs,za,label='Z')
26 plt.title('MPU6050')
27 plt.xlabel('Samples')
28 plt.ylabel('Degrees')
29 ax.legend()
30
31 def animate(i, xa,ya,za):
32 a,d = s.recvfrom(256)
33 b = a.decode('utf-8')
34 c = b.split(',')
35 if len(c) == 3:
36 xa.append(float(c[0]))
37 ya.append(float(c[1]))
38 za.append(float(c[2]))
39 xa = xa[-x_len:]
40 ya = ya[-x_len:]
41 za = za[-x_len:]
42 linex.set_ydata(xa)
43 liney.set_ydata(ya)
44 linez.set_ydata(za)
45 return linex,liney,linez,
46 else:
47 return linex,liney,linez,
48 ani = anim.FuncAnimation(fig,animate,
49 fargs=(xa,ya,za,),
50 interval=1,
51 blit=True)
52 plt.show() # show the figure

Python Program

 92

WiFi with Matlab

Matlab provides functions for
interacting with devices. The interface
used in the following example is the
USB interface which appears to be a
COM port. It is the same COM port
used for uploading programs.

The Arduino code from the previous
lesson will be used. Reload the code
with the WiFi accelerometer program
if necessary. You will need to change
the delay() at the bottom of the
program. Set it to 100ms. This is
because Matlab is a bit slow and the
high data rate will overload Matlab.

Accelerometer Code

loop() {
 int reg[6];
 int i;
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {

 Wire.beginTransmission(0x1c);
 Wire.write(0x01);
 Wire.endTransmission(false);
 while(Wire.available() < 6) {
 delay(1);
 }
 for(i=0;i<6;i++)
 reg[i] = Wire.read();
 short x = (reg[0] << 8) | reg[1];
 short y = (reg[2] << 8) | reg[3];
 short z = (reg[4] << 8) | reg[5];
 x = x >> 2;
 y = y >> 2;
 z = z >> 2;
 float gx = x / 4095.0;

 float gy = y / 4095.0;
 float gz = z / 4095.0;
 client.print(gx,2);
 client.print(“,“);
 client.print(gy,2);
 client.print(“,“);
 client.println(gz,2);
 delay(100);
 }
 }
}

 93

WiFi with Matlab

First, three arrays will be created to hold the data for each axis of the accelerometer. A figure will be
created to display three plots. Next, variable t will be created and be the network object. A tcp-ip
connection is being created. The first argument is the Experimenters Kit IP address. The second
argument is the port number. The third argument indicates a network connection and the last
argument specifies the program operates as a client. fopen(t) connects to the Experimenters Kit.

An infinite loop is created with the while 1. A for loop is used to collect 50 data samples and fill the
arrays.

xa = zeros(50,1);
ya = zeros(50,1);
za = zeros(50,1);

figure;
t = tcpip('192.168.4.1',80,'NetworkRole','client');
fopen(t);
while 1
 for b=1:50
 p = fscanf(t,'%e %e %e');
 xa(b) = p(1);
 ya(b) = p(2);
 za(b) = p(3);
 end
 subplot(3,1,1);
 plot(xa);
 title('Accel X');
 axis([1,50,-8200,8200]);
 subplot(3,1,2);
 plot(ya);
 title('Accel Y');
 axis([1,50,-8200,8200]);
 subplot(3,1,3);
 plot(za);
 title('Accel Z');
 axis([1,50,-8200,8200]);
 drawnow;
end

 94

WiFi with Matlab

After the 50 samples are collected, the data is plotted in three separate plots. drawnow is executed
to update the display.

To stop the Matlab code, click on the Pause button. Then click on the Quit Debugging button. In the
command window enter fclose(t) and press enter. This properly stops the code and closes the
network connection. If this is not done, the program cannot be rerun. If an error indicating the
network connection is not available, restart Matlab.

xa = zeros(50,1);
ya = zeros(50,1);
za = zeros(50,1);

figure;
t = tcpip('192.168.4.1',80,'NetworkRole','client');
fopen(t);
while 1
 for b=1:50
 p = fscanf(t,'%e %e %e');
 xa(b) = p(1);
 ya(b) = p(2);
 za(b) = p(3);
 end
 subplot(3,1,1);
 plot(xa);
 title('Accel X');
 axis([1,50,-8200,8200]);
 subplot(3,1,2);
 plot(ya);
 title('Accel Y');
 axis([1,50,-8200,8200]);
 subplot(3,1,3);
 plot(za);
 title('Accel Z');
 axis([1,50,-8200,8200]);
 drawnow;
end

 95

End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

