
Sten-SLATE ESP

Stensat Group LLC, Copyright 2018Stensat Group LLC,

Magnetometer and I2C Bus

 2

I2C Bus

● I2C stands for Inter-Integrated Circuit. It is a serial type interface requiring
only two signals, a clock signal and a data signal.

● The I2C bus is typically used to interface with sensors and peripheral
devices not needing to communicate at high speeds. The standard data rate
is 100 Kilobits per second.

● Multiple devices can be connected to a single I2C bus. The processor is the
controller and all the connected devices are peripherals. The processor is
also called the master and the peripherals are slaves. Each slave has a
unique address.

ProcessorProcessor

Peripheral
1

Peripheral
1

Peripheral
2

Peripheral
2

Peripheral
3

Peripheral
3

SDA

SCL

 3

I2C Bus

● The clock signal is labeled SCL. This signal is used to control the flow of the
data bits.

● The data signal is called SDA. This carries the data serially.

● The diagram below shows how a data transfer occurs.

● The data transfer protocol is for the master to first send out a device
address. This is a 7 bit number followed by a bit indicating if the next byte is
to be written to a slave or read from a slave.

● The SCL signal toggles for each bit sent.

 4

I2C Sequence

● Every device on the I2C bus has a unique 7-bit address. The magnetometer
address is 0x0d.

● The I2C operation for writing to a register is:

1. Send Start sequence by keeping SCL high and changing SDA from high to low (ST)

2. Send the device address

3. Send the register address

4. Send the stop sequence by changing SDA from low to high while SCL is high first.
(SP)

● All Bytes sent are acknowledge by the slave.

ST Device Address W

AK

Register Address

AK

Data

AK

SPMaster

Slave

 5

I2C Sequence

● The I2C operation for reading a register is:

1. Send Start sequence by keeping SCL high and changing SDA from high to low
(ST)

2. Send the device address

3. Send the register address

4. Send a repeat start sequence with a read indication (SR)

5. Read in 6 bytes

6. Send a stop sequence (SP)

ST
Device

Address R

AK

Register
Address

AK DataAK

SPMaster

Slave

SP AK
Device

Address W

 6

Magnetometer Sensor

● The QMC5883L is a 3-axis magnetic sensor called a magnetometer or
compass. It can measure up to +/- 8 gauss or +/-2 gauss.

● It uses an internal 16-bit ADC and can provide heading accuracy of 1 to 2
degress.

● It uses the I2C bus for communications.

● It is sensitive enough to detect earth's magnetic field so it can be used as a
compass. Being this sensitive, it will also be sensitive to other magnetic
fields in the area which can distort its measurement of earth's magnetic field.

 7

Magnetometer Sensor

● The sensor uses magneto-
resistive devices to detect
magnetic fields. The devices use a
property of material that changes
its resistance in the presence of a
magnetic field. Lord Kelvin
discovered this when he noticed a
slight resistance change in iron
when exposed to a magnetic field.

● The diagram to the right shows
the three sensors in what is called
a wheatstone bridge circuit. This
circuit is used widely in sensors.

 8

Magnetometer Configuration

● The magnetometer has a group of registers which is special memory for
holding data and configuration information. Each register has a unique
address. The I2C transaction always starts with specifying the register
address and then the data transaction.

● The magnetometer has 13 registers. The following registers shown are what
will be used.

Register Name Address

X LSB 0x00

X MSB 0x01

Y LSB 0x02

Y MSB 0x03

Z LSB 0x04

Z MSB 0x05

Control Reg 1 0x09

Control Reg 2 0x0a

Set/Reset Period 0x0b

 9

Register Description

● The registers with the data start at address 0x00. They are formatted as
shown below. Since the data for each axis is 16 bits, two registers are
required to hold the data. The upper half called the most significant byte or
MSB contains the 8 most significant bits of the data.

● The second register holds the least significant byte or LSB and contains the
lower 8 bits.

● The data range is 0xFFFF 0x7FFF. It is two compliment so when the most
significant bit is set, the value is negative.

Address Reg Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x00 LSB D7 D6 D5 D4 D3 D2 D1 D0

0x01 MSB D15 D14 D13 D12 D11 D10 D9 D8

 10

Control Register

● Configuration register 1 is used to set the number of samples averaged, the
data rate and the measurement range.

● The tables below show the settings for each bit of the register.

Reg Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x09 OSR[1] SDR[0] RNG[1] RNG[0] ODR[1] ODR[0] MODE[1] MODE[0]

Bits 1,0 Mode

00 Standby

01 Continuous

Bits 3,2 Output Data
Rate

00 10 Hz

01 50 Hz

10 100 Hz

11 200 Hz

Bits 5,4 Full Scale

00 2 gauss

01 8 gauss

Bits 7,6 Over Sample
Ratio

00 512

01 256

10 12

11 64

 11

Control Register

● Configuration register 2 has only three bits used.

● Bit 0 is used to enable an interrupt pin. It is not available.

● Bit 6 is a pointer rollover bit. If set, code can keep reading the data registers
without having to send an address each time.

● Bit 7 is a soft reset. When set to 1, the device will reset to default settings.

Reg Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0x0a SOFT
RESET

ROL PNT INT
ENABLE

 12

Connecting the Accelerometer

● The processor uses pins 4 and 5 for the
I2C bus. Pin 4 is SCL and pin 5 is SDA.

● The pins on the accelerometer are
identified on the back side. The picture
shown is from the top side of the
accelerometer.

● The sensor can be inserted into the
solderless bread board.

● Use the male to female jumpers.
VIN GND SCL SDA

 13

Connecting the Accelerometer

● Connect 3.3V to VCC_IN.

● Skip a pin.

● Connect GND to GND.

● Connect D4 to the next pin SCL.

● Connect D5 to the next pin SDA.

SDA SCL GND VCC_IN

 14

I2C Bus

● There is a library called Wire that
handles all the I2C data transfer
details. Using this library
simplifies using the I2C bus.

● In a new program, add the library
Wire.

● To add a library, click on the
Sketch menu, select Include
Library, and scan down to locate
Wire.

● The include file will be added to
the top of the program.

#include <Wire.h>

void setup() {
 Wire.begin(4,5);
 Serial.begin(115200);

 15

I2C Bus

● In setup(), the I2C interface is
configued. Digital Pin 4 is set to
SCL and pin 5 is set to SDA.

● The serial interface is configured
so data from the accelerometer to
be connected can be viewed.

● Noticed the data rate has been
increased to 115200. This allows
the data to be displayed faster.

#include <Wire.h>

void setup() {
 Wire.begin(4,5);
 Serial.begin(115200);

 16

I2C Bus

● Next, the magnetometer needs to be
configured.

● The magnetometer address is 0x0d.
The first I2C command is
Wire.beginTransmission(0x0d); This
command initiates the I2C transfer and
sends out the device address.

● The Wire.write(0x09); command sends
the first byte on the I2C bus. This byte
is used to tell the magnetometer that
the next byte is to be written into
register 0x09. Register 0x09 is
CTRL_REG1.

● The next byte 0x05 is the data to be
written in the register.

● Wire.endTransmission() completes
the data transfer.

#include <Wire.h>

void setup() {
 Wire.begin(4,5);
 Serial.begin(115200);
 Wire.beginTransmission(0x0d);
 Wire.write(0x09);
 Wire.write(0x05);
 Wire.endTransmission();
}

 17

I2C Bus

● Moving on to the loop() section. The
X,Y,Z accelerometer data will be read
from the slave. This is a two step
process.

● int reg[6] declares an array of variables.
They all have the same name but are
differentiated by the number between
the brackets. This array will be used to
hold the accelerometer data.

void loop() {
 int reg[6];
 int i;
 Wire.beginTransmission(0x0d);
 Wire.write(0x00);
 Wire.endTransmission(false);

 18

I2C Bus

● First step is to send the address where
the data is located to be read. The I2C
data transfer is started as usual, the
register address is written with
Wire.write(0x00). The I2C transfer is
stopped with an argument false. This
is needed to indicate a read is to occur.

● The data registers start at address
0x00. Each axis uses two registers.

void loop() {
 int reg[6];
 int i;
 Wire.beginTransmission(0x0d);
 Wire.write(0x00);
 Wire.endTransmission(false);

 19

I2C Bus

● The second step is to request reading a
specific number of bytes.

● Wire.requestFrom(0x0d,6) starts the
reading of the data registers. The slave
address is specified and the number of
bytes to read is specified.

void loop() {
 int reg[6];
 int i;
 Wire.beginTransmission(0x0d);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(0x0d,6);

 20

I2C Bus

● After the request is made, a
while loop waits for 6 bytes to be
transferred from the
accelerometer. Once 6 bytes are
transferred, the code can read in
the bytes.

void loop() {
 int reg[6];
 int i;
 Wire.beginTransmission(0x0d);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(0x0d,6);
 while(Wire.available() < 6) {
 delay(1);
 }
 for(i=0;i<6;i++) reg[i] = Wire.read();

 21

I2C Bus

● The bytes read are combined
into complete 16-bit numbers.

● reg[0] holds the least significant
byte of the X data. reg[1] holds
the most significant byte of the X
data. To combine them, reg[1] is
shifted left 8 bits to a 16 bit
variable and then OR'd with the
least significant byte. This
combines the two registers into a
single 16-bit number.

● The same is done with the Y and
Z data.

void loop() {
 int reg[6];
 int i;
 Wire.beginTransmission(0x0d);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(0x0d,6);
 while(Wire.available() < 6) {
 delay(1);
 }
 for(i=0;i<6;i++) reg[i] = Wire.read();
 short x = (reg[1] << 8) | reg[0];
 short y = (reg[3] << 8) | reg[2];
 short z = (reg[5] << 8) | reg[4];

 22

I2C Bus

● Lastly, the data is displayed in
the serial monitor.

● Upload the program and run it.
Change the orientation of the
sensor board and observe how
the values change.

void loop() {
 int reg[6];
 int i;
 Wire.beginTransmission(0x0d);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(0x0d,6);
 while(Wire.available() < 6) {
 delay(1);
 }
 for(i=0;i<6;i++) reg[i] = Wire.read();
 short x = (reg[1] << 8) | reg[0];
 short y = (reg[3] << 8) | reg[2];
 short z = (reg[5] << 8) | reg[4];
 Serial.print(x); Serial.print(“ “);
 Serial.print(y); Serial.print(“ “);
 Serial.println(z);
 delay(100);
}

 23

Logical Operations

● There are some logical
operations used in the code.
Let's start with the shift. reg[1]
contains the most significant
bits and reg[0] contains the
least significant bits from the
accelerometer for the X axis.

● Variable x is declared a short
which means x is a 16 bit
variable.

D15 D14 D13 D12 D11 D10 D9 D8reg[1]

reg[0] D7 D6 D5 D4 D3 D2 D1 D0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Variable x

 24

Logical Operations

● Top right shows the
variables. reg[0] and
reg[1] are 8 bits and x
is 16 bits.

● The equation
reg[1] <<8 moves the
bits of reg[1] to the left
8 bits as shown in the
lower right. reg[1]
becomes the top half of
variable x

reg[1]

reg[0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Variable x

reg[1]

reg[0]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Variable x

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

D7 D6 D5 D4 D3 D2 D1 D0

D15 D14 D13 D12 D11 D10 D9 D8

 25

Logical Operations

● Next, the variable
reg[0] is OR'd with
variable x. The vertical
line in the equation is
the OR symbol.

● This combines reg[1]
into variable x.

reg[0]

reg[1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Variable x

reg[0] reg[1]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Variable x

short x = (reg[0] << 8) | reg[1];

Shift Symbol

OR symbol

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 D1 D0

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

 26

Logical Operators

● What is OR? OR is a logical operation. At it's simplest with two inputs, if any
of the inputs are a logic level 1, the result is 1. If both inputs are 0, the output
is 0.

● When doing a logic OR between two variables, each bit from one variable is
OR'd with the corresponding bit of the other variable.

0 1 0 0 1 1 0 0

1 0 0 0 0 1 0 1

1 1 0 0 1 1 0 1

Variable A

Variable B

Result

 27

Calibrating the Magnetometer

● The magnetometer can have a bias meaning that as the sensor is rotated,
the values do not go around the center point of 0. One axis can have all
negative values in all orientations. External magnetic fields can cause this or
it was caused during manufacturing.

● A simple way to determine the bias and remove it is to assume the values
generated as the sensor is rotated will make a circle if plotted. The offset of
the center of the circle can be determined and subtracted from the sensor
data to move the circle of data so the center is at 0.

 28

Calibrating the Magnetometer

● This code will calibrate.

● At the top of the code, global
variables are declared. minX,
maxX and the rest will hold
the largest and smallest
values detected in the X axis.
The other axis have their
variables.

● offX, offY, offZ will hold the
offsets calculated.

● In setup, the variables are
initialized. maxX is set to
-9999 so it is guaranteed a
larger value will occur. Same
with minX. It is set to a value
that is larger than expected.

#include <Wire.h>
int maxX, maxY, maxZ;
int minX, minY, minZ;
int offX, offY, offZ;
int fx, fy, fz;

void setup() {
 Serial.begin(115200);
 delay(500);
 Wire.begin(4, 5);
 Wire.setClock(100000);
 delay(100);
 Wire.beginTransmission(0x0d);
 Wire.write(0x09);
 Wire.write(0x05);
 Wire.endTransmission();
 Serial.println("\n\nConfigured");
 maxX = ­9999; maxY = ­9999; maxZ = ­9999;
 minX = 9999; minY = 9999; minZ = 9999;
 offX = 0; offY = 0; offZ = 0;
}

 29

Calibrating the Magnetometer

● In the loop, the sensor will
be sampled and the
calibration will be
performed.

● The data is compared to
the min and max variables
and the min and max
variable are updated when
the data exceeds the min
and max values.

● The offsets are calculated
by determining the average
between the min and max.

● The final data fx,fy, and fz
are calculated by
subtracting the offset from
the sensor data.

void loop() {
 // put your main code here, to run repeatedly:
 int reg[6];
 // Serial.println("Getting data");
 Wire.beginTransmission(0x0d);
 Wire.write(0x0);
 Wire.endTransmission(false);
 delay(10);
 Wire.requestFrom(0x0d, 6);
 while (Wire.available() < 6) delay(1);
 for (int i = 0; i < 6; i++) reg[i] = Wire.read();
 short x = (reg[1] << 8) | reg[0];
 short y = (reg[3] << 8) | reg[2];
 short z = (reg[4] << 8) | reg[4];
 if (x > maxX) maxX = (int)x;
 if (x < minX) minX = (int)x;
 if (y > maxY) maxY = (int)y;
 if (y < minY) minY = (int)y;
 if (z > maxZ) maxZ = (int)z;
 if (z < minZ) minZ = (int)z;
 offX = (maxX + minX) / 2;
 offY = (maxY + minY) / 2;
 offZ = (maxZ + minZ) / 2;
 fx = (int)x ­ offX;
 fy = (int)y ­ offY;
 fz = (int)z ­ offZ;

 30

Calibrating the Magnetometer

● Finally, the results are
displayed.

● Upload the code and try it out.

● Once it starts running, rotate the
sensor in all directions. The
values should start centering
around zero.

● The more you rotate slowly and
more often, the better the offset
calculation will get.

● You could plot the data in 3
dimensions to see if a sphere is
created.

● Calibration should not be
continuous. It should be done
for a period of time then the
offsets used.

 fx = (int)x ­ offX;
 fy = (int)y ­ offY;
 fz = (int)z ­ offZ;

 Serial.print(fx);
 Serial.print(" ");
 Serial.print(fy);
 Serial.print(" ");
 Serial.println(fz);
 delay(100);
}

 31

End

