
Analog-to-Digital Converter Module

Operations

2

Introduction
● The Analog-to-Digital Converter or

ADC is a module that converts
voltages to a digital value.

● The module uses the Texas
Instruments ADS1115 which can
measure four channels with a
resolution of 16-bits.

● The ADC has a programmable gain
amplifier which allows different
ranges of voltages to be measured.

● Communications is through the I2C
bus.

https://learn.sparkfun.com/tutorials/analog-to-digital-conversion/all
https://learn.sparkfun.com/tutorials/i2c/all

3

ADC Module
● The ADC module provides easy

connections.

● Power and I2C bus are broken out along
with the ADDR pin and ALERT pin from the
ADC. A spare set of four pins aligned with
power and the I2C signals provide the ability
to daisy-chain multiple I2C based modules.

● On the bottom side are the connections to
the analog inputs. Each input includes a
ground and 3.3V power to support voltage
divider circuits or sensors that require
power. A0 is channel 0, A1 is channel 1, A2
is channel 2 and A3 is channel 3.

4

ADC Interface
● The ADC can be configured to operate

at one of four available device
addresses. This allows up to four ADC
modules to be used on an I2C
interface.

● The address is selected based on
where the ADDR signal is connected,
3.3V, GND, SDA signal or SCL signal.

ADDR Conncetion Address

GND 0x48

3.3V 0x49

SDA 0x4a

SCL 0x4b

5

ADC Connection
● Connections are shown to the right using

the SLATE board.

● A jumper from ADDR to GND sets the
address of the ADC to 0x48.

6

ADC Configuration
● There is one 16-bit configuration register that needs to be set before using

the ADC.

● The bits in the configuration register are used to set the channel input to
measure the voltage range and the data rate for continuous measurements.

● Below is the configuration register showing all the bit assignments.

7

ADC Configuration
● Bit 15 – OS, This is the operational status bit. Logic 1 indicates conversion in

progress.

● Bits 14-12 – MUX[2:0], these three bits select the input configuration. Both
differential input configuration or single ended configuration can be
selected. We will use single ended configuration.

● Bits 11-9 – PGA[2:0], these three bits set the voltage range on the input. Up
to 6.144 volts can be selected but the input range can only be up to the
power input which is 3.3 volts. By default, +/- 2.048 volts is the range.
Higher ranges means that the input will not reach full scale of the ADC.

● Bit 8 – MODE, This sets the ADC to operate in single conversion of
continuous mode. Setting it to 1 is single-shot mode and power down.

8

ADC Configuration
● Bits 7-5 – DR[2:0], These three bits set the data rate. The range is from 8

samples/sec to 860 samples/sec.

● The rest of the bits are for comparator operations. These bits will not be
used. Read the datasheet if you are interested in using the camparator
functions.

9

ADC Operation
● The following code will set sample rate of

the ADC to 128 samples/sec. The ADC will
convert the voltage to a value in 7.8 ms
after initiating the conversion.

● The following example will operate the ADC
in single conversion mode.

● The configuration register will be written to
configure the device and initiate a
conversion. The program will wait 10 ms
and read the results. The 10 ms gives the
ADC time to perform the conversion.

● The code to the right is a function to get
data from the ADC.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 unsigned char b;
 b = (addr << 4) | 0xc3;
 Wire.beginTransmission(ADC);
 Wire.write(0x01);
 Wire.write(b);
 Wire.write(0x83);
 Wire.endTransmission();
 delay(10);
 Wire.beginTransmission(ADC);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(ADC,2);
 while(Wire.available() < 2) delay(1);
 int c = Wire.read();
 int d = Wire.read();
 short res = (c << 8) + d;
 return res;
}

10

ADC Operation
● ADC is defined as the address with the

ADDR pin connected to a GND pin.

● The function readADC() will configure the
ADC and set the multiplexer input based on
the parameter addr.

● b is used to combine the input selection
with the other configuration bits. The input
selection is shifted 4 bits in the direction of
the most significant bit to the MUX[] bit
locations.

● addr is to have a value range of zero to
three to select one of the four ADC inputs.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 unsigned char b;
 b = (addr << 4) | 0xc3;
 Wire.beginTransmission(ADC);
 Wire.write(0x01);
 Wire.write(b);
 Wire.write(0x83);
 Wire.endTransmission();
 delay(10);
 Wire.beginTransmission(ADC);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(ADC,2);
 while(Wire.available() < 2) delay(1);
 int c = Wire.read();
 int d = Wire.read();
 short res = (c << 8) + d;
 return res;
}

11

ADC Operation
● The first I2C operation is to set the ADC

configuration register by sending two
configuration bytes.

● First, the address 0x01 is sent to select the
configuration register.

● The first configuration byte is then sent. OS bit is
set to start the conversion. The gain is set to +/-
4.096 volts, the input is selected and MODE is
set to single conversion.

● The second configuration byte sets the sample
rate to 128 samples/sec and the default values
for the comparator functions.

● After the write to the configuration register, the
program waits 10 ms.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 unsigned char b;
 b = (addr << 4) | 0xc3;
 Wire.beginTransmission(ADC);
 Wire.write(0x01);
 Wire.write(b);
 Wire.write(0x83);
 Wire.endTransmission();
 delay(10);
 Wire.beginTransmission(ADC);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(ADC,2);
 while(Wire.available() < 2) delay(1);
 int c = Wire.read();
 int d = Wire.read();
 short res = (c << 8) + d;
 return res;
}

12

ADC Operation
● After the short wait, the address of the data

conversion is then sent to the ADC. The
endTransmission() is sent with a false flag
indicating to the I2C to restart.

● A read request for 2 bytes is then sent.

● The program waits for 2 bytes to become
available and the values are then read.

● The most significant byte is read first
followed by the least significant.

● The two bytes read are assembled and put
into the res variable.

● The results are then returned.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 unsigned char b;
 b = (addr << 4) | 0xc3;
 Wire.beginTransmission(ADC);
 Wire.write(0x01);
 Wire.write(b);
 Wire.write(0x83);
 Wire.endTransmission();
 delay(10);
 Wire.beginTransmission(ADC);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(ADC,2);
 while(Wire.available() < 2) delay(1);
 int c = Wire.read();
 int d = Wire.read();
 short res = (c << 8) + d;
 return res;
}

Part 1 of 2 Code. See next page
for the rest of the code

13

ADC Operation
● With the readADC() function completed,

the main code can be written.

● The setup() function initializes the serial
interface and the I2C interface.

● The loop() function loops through the
four inputs and displays the value from
each.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 /* code removed for space */
}

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
}

void loop() {
 for(int c = 0;c < 4;c++) {
 short val = readADC(c);
 Serial.print(c);
 Serial.print(“ “);
 float volt = (float)val/32767.0*4.096;
 Serial.println(volt);
 delay(100);
 }
}

Part 2 of 2 Code. Include function
in previous page where shown.

14

ADC Operation
● As the for() loop cycles through each

input, the measurement is made for the
input selected by variable c.

● A 16-bit value is returned into the short
variable val. Since the input could be
negative, the short variable val is
signed.

● The ADC value is converted to a
voltage. The 4.096 is the range that the
ADC is set to. The 32767 is the ADC
range which is -32767 to 32767.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 /* code removed for space */
}

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
}

void loop() {
 for(int c = 0;c < 4;c++) {
 short val = readADC(c);
 Serial.print(c);
 Serial.print(“ “);
 float volt = (float)val/32767.0*4.096;
 Serial.println(volt);
 delay(100);
 }
}

15

ADC Test
● Upload the program.

● Connect all four ADC inputs (A0,A1,A2,A3) to the
GND pins on the ADC module.

● Open the Serial Monitor window and check the
results of the ADC conversion. All the values
should be 0 or very close to it.

● Move one of the ADC inputs from GND to 3.3V
connection on the SLATE.

● Check the measurement on the serial monitor
window. It should be reading near 3.3 volts.

● Test each input.

16

Using the ADC
● Install the Ultrasonic sensor board that

includes the thermistor and light sensor.
Connect the sensors to the first two channels
on the ADC module. 1V on the sensor board
will connect to 3.3V. ADC connects to the A0
and A1. Put the light sensor on A0 and the
thermistor on A1.

● GND pins on the sensor board connect to
GND on the ADC module.

● Monitor the voltages and play with the sensors
to make them change. This is how analog
sensors can be connected to the ADC board.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

