
Joystick Interface

2
Joystick Module

● The joystick module consists of four tactile push buttons and an analog
joystick that includes a button activated by pressing the joystick knob.

Pushbuttons
Pushbutton

Contacts

Joystick

Joystick Signals

3
Joystick Module

● The push buttons are connected to the ground pin on one side and
connected to A, B, C, D and S pins. When the push button is pressed, the
pin A, B, C, D, or S are connected to ground through the button.

● In order to use the buttons, a pull-up resistor needs to be included to pull the
pin to 3.3 volts when the button is not pushed. The SLATE processor has a
pull-up resistor built in for each digital pin. It is activated using the pinMode()
function.

– Example: pinMode(5,INPUT_PULLUP);

● The following digital pins can be used with the push buttons.

– D0, D2, D4, D5, D12, D13, D14.

https://learn.sparkfun.com/tutorials/pull-up-resistors/all

4
Joystick Module

● Connect the following digital pins to push buttons

– A to D12

– B to D13

– C to D14

– D to D0

– Connect GND on the joystick module to any of
GND pin on the SLATE.

● Load the Arduino program and run it and open
the serial monitor.

● With none of the push buttons pressed, the serial
monitor should display four ones.

● Press any of the buttons and observe the value
change to zero.

void setup() {
 Serial.begin(115200);
 pinMode(12,INPUT_PULLUP);
 pinMode(13,INPUT_PULLUP);
 pinMode(14,INPUT_PULLUP);
 pinMode(0,INPUT_PULLUP);
}

void loop() {
 char buf[32];
 int a = digitalRead(12);
 int b = digitalRead(13);
 int c = digitalRead(14);
 int d = digitalRead(0);
 snprintf(buf,32,”%d %d %d %d”,a,b,c,d);
 Serial.println(buf);
 delay(20);
}

5
Joystick Module

● With none of the push buttons pressed,
the serial monitor should display four
ones.

● Press any of the buttons and observe
the value change to zero.

● Any combination of buttons can be
pressed simultaneously.

void setup() {
 Serial.begin(115200);
 pinMode(12,INPUT_PULLUP);
 pinMode(13,INPUT_PULLUP);
 pinMode(14,INPUT_PULLUP);
 pinMode(0,INPUT_PULLUP);
}

void loop() {
 char buf[32];
 int a = digitalRead(12);
 int b = digitalRead(13);
 int c = digitalRead(14);
 int d = digitalRead(0);
 snprintf(buf,32,”%d %d %d %d”,a,b,c,d);
 Serial.println(buf);
 delay(20);
}

6
Joystick Module

● This python program shows how to use the
buttons to maneuver a square in a canvas
using Tkinter.

● The serial interface is used to capture the
button states from the program on the
previous page. The serial interface is opened
with a timeout parameter set to .01 seconds.

● A canvas of 1000 pixels by 800 pixels is
created with a black background.

● A rectangle is created for the canvas and is
assigned a variable veh.

from tkinter import *
import serial
import threading

s = serial.Serial('COM4',115200,timeout=.01);

top = Tk()
c = Canvas(top,height=800,width=1000,bg='black')
veh = c.create_rectangle(500,400,550,450,fill='red')

7
Joystick Module

● This function will be executed as a
thread.

● velx and vely variables set the speed
of the rectangle. posx and posy set
the position of the rectangle.

● After initializing the variables, the
function goes into an infinite loop. This
is required for the function to
continuously run as a thread.

def check_buttons():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 while 1:
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8')
 but = dat.split(" ")
 if len(but) == 4:
 if but[0] == '0':
 velx = velx + .1
 if but[1] == '0':
 velx = velx - .1
 if but[2] == '0':
 vely = vely + .1
 if but[3] == '0\r\n':
 vely = vely - .1
 print(but,velx,vely)
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

8
Joystick Module

● dat is assigned any serial data
received. s.readline() waits for a line
of text terminated by a linefeed to be
received. This is where the timeout
parameter is used. s.readline() will
wait for a line of data to arrive. If
timeout was defined, s.readline() will
quit after the timeout and let the code
continue executing. This is why the
next line checks if dat contains any
data. if dat !=None checks if dat is
not empty and will execute the
indented code if not empty.

def check_buttons():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 while 1:
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8')
 but = dat.split(" ")
 if len(but) == 4:
 if but[0] == '0':
 velx = velx + .1
 if but[1] == '0':
 velx = velx - .1
 if but[2] == '0':
 vely = vely + .1
 if but[3] == '0\r\n':
 vely = vely - .1
 print(but,velx,vely)
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

9
Joystick Module

● Next, dat is converted to a string with
the dat.decode() function.

● but is assigned a list of string values
from the dat.split() function.

● Next, but variable is checked to have
four elements. If there are four
elements, then each one is checked
and the velocity in the selected
direction is increased.

● Notice but[3] == ‘0\r\n’. This is
because Serial.println() adds carriage
return and line feed characters to the
end of the text.

def check_buttons():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 while 1:
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8')
 but = dat.split(" ")
 if len(but) == 4:
 if but[0] == '0':
 velx = velx + .1
 if but[1] == '0':
 velx = velx - .1
 if but[2] == '0':
 vely = vely + .1
 if but[3] == '0\r\n':
 vely = vely - .1
 print(but,velx,vely)
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

10
Joystick Module

● The position is updated based on
velocity.

● The positions are checked for going
off the canvas and changed to the
opposite side of the canvas.

● Lastly, the coordinates of the rectangle
are updated.

def check_buttons():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 while 1:
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8')
 but = dat.split(" ")
 if len(but) == 4:
 if but[0] == '0':
 velx = velx + .1
 if but[1] == '0':
 velx = velx - .1
 if but[2] == '0':
 vely = vely + .1
 if but[3] == '0\n':
 vely = vely - .1
 print(but,velx,vely)
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

11
Joystick Module

● The last part of the program sets up
the thread and starts the thread called
check_buttons.

● Finally, the canvas is packed into the
window and the mainloop() is started.

● Run the previous Arduino program.
Run this program and try out the
buttons and see how the rectangle
reacts.

● You can turn this into a game.

x = threading.Thread(target=check_buttons)
x.start()
c.pack()
top.mainloop()

12
Joystick Module

● The joystick is built with two potentiometers providing
analog outputs for the two axis.

● The potentiometer consists of a resistive material.
The ends of the material have pins connected. The
resistance is 10,000 ohms between the two pins.

● A wiper is connected to a third pin. The wiper moves
across the resistive material and have a changing
resistance relative to the other pins.

● With a voltage applied to the ends of the resistive
material, the voltage from the wiper will vary from 0 to
the input voltage. The closer it gets to one end, the
closer it is at that voltage level.

Potentiometers

Resistive
Strip

Wiper

+ Y -

https://en.wikipedia.org/wiki/Potentiometer

13
Joystick Module

● Since the SLATE has only one analog port
and the joystick has two analog outputs,
the ADC module will be needed to capture
both axis.

● Leave the buttons wired as is. They will be
used later.

● Connect the ADC to the SLATE I2C port.

● Connect the joystick to the ADC as shown.

– 5V to 3.3V on the ADC board

– GND to the GND on the ADC board

– Y to A0 on the ADC board

– X to A1 on the ADC board

14
Joystick Module

● Start a new Arduino program.

● First, the function to read the ADC values
from the ADC module needs to be
inserted into the program. This is taken
from the ADC lesson.

● This function will measure the voltage of
the selected channel.

#include <Wire.h>

#define ADC 0x48

short readADC(unsigned char addr) {
 unsigned char b;
 b = (addr << 4) | 0xc3;
 Wire.beginTransmission(ADC);
 Wire.write(0x01);
 Wire.write(b);
 Wire.write(0x83);
 Wire.endTransmission();
 delay(10);
 Wire.beginTransmission(ADC);
 Wire.write(0x00);
 Wire.endTransmission(false);
 Wire.requestFrom(ADC,2);
 while(Wire.available() < 2) delay(1);
 int c = Wire.read();
 int d = Wire.read();
 short res = (c << 8) + b;
 return res;
}

15
Joystick Module

● This section of the code is similar to the
ADC module lesson.

● The ADC values are printed and not
converted to voltages.

● Load and run the program and observe
the range of the ADC when moving the
joystick in the serial monitor.

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
}

void loop() {
 short x = readADC(0);
 short y = readADC(1);
 Serial.print(x);
 Serial.print(“ “);
 Serial.println(y);
 delay(100);
}

16
Joystick Module

● Let’s combine the buttons and
joystick into one Arduino
program. Keep the readADC()
function from the last program.

● The digital pins need to be
configured as inputs with pull-up
resistors enabled.

● The loop() collects the analog
voltages and reads the state of
each button.

● All the information is put in a
string comma separated and sent
out the serial interface.

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 pinMode(12,INPUT_PULLUP);
 pinMode(13,INPUT_PULLUP);
 pinMode(14,INPUT_PULLUP);
 pinMode(0,INPUT_PULLUP);
}

void loop() {
 char buf[32];
 short x = readADC(0);
 short y = readADC(1);
 int a = digitalRead(12);
 int b = digitalRead(13);
 int c = digitalRead(14);
 int d = digitalRead(0);
 snprintf(buf,32,”%d,%d,%d,%d,%d,%d”,x,y,a,b,c,d);
 Serial.println(buf);
 delay(50);
}

17
Joystick Module

● For the python program, the program
will be similar to the one using the
buttons except the joystick will be
used to move the square around. With
the analog joystick, you can control
the acceleration of the square.

● One of the things that needs to be
done is calibrate the center position of
the joystick. No two joysticks will have
the same center value.

● The buttons will be used to change the
color of the square.

18
Joystick Module

● The beginning of the program includes the needed modules, the serial
interface, threading and tkinter.

● The next two lines define scale factors. They will be explained later.

● The serial port is opened, Tk() is created along with the canvas, the square
and text stating the joystick is being calibrated. The text will appear when the
program starts and the window opens.

import serial
import threading
from tkinter import *

SCALE = 1000
SCALE_VEL = 10

s = serial.Serial('/dev/cu.usbserial-DN02SIRH',115200)
top = Tk()
c = Canvas(top,height=800,width=1000,bg='black')
veh = c.create_rectangle(500,400,550,450,fill='red')
msg = c.create_text(500,100,text="Calibrating, do not touch joystick",fill='yellow')

19
Joystick Module

● This function will be run as a thread in
parallel with the tkinter mainloop()
function.

● Just like in the previous python program,
variables are initialized. Two new
variables are added. These will be used
to subtract the center position from the
joystick measurements. This will allow
for negative values when the joystick
axis are moved left and down.

def check_joystick():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 ctrx = 0
 ctry = 0
 for i in range(0,100):
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8',ignore)
 joy = dat.split(',')
 if len(joy) == 6:
 ctrx = ctrx + int(joy[1])
 ctry = ctry + int(joy[0])
 ctrx = ctrx / 100
 ctry = ctry / 100
 print(ctrx,ctry)
 c.delete(msg)

20
Joystick Module

● This for loop samples the joystick 100
times and accumulates the measurents
in the variables ctrx and ctry.

● After the for loop, the variables are
divided by 100 with the results being the
average center position of the joystick.
During the for loop, the joystick should
not be touched.

● At the end of this section of code, the
calibration message is deleted and
removed from the display.

def check_joystick():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 ctrx = 0
 ctry = 0
 for i in range(0,100):
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8',ignore)
 joy = dat.split(',')
 if len(joy) == 6:
 ctrx = ctrx + int(joy[1])
 ctry = ctry + int(joy[0])
 ctrx = ctrx / 100
 ctry = ctry / 100
 print(ctrx,ctry)
 c.delete(msg)

21
Joystick Module

● Continuing in the function, the thread
goes into a while loop that will run
forever.

● Again, the joystick and button data is
read and processed as before.

● The final joystick values are calculated
by subtracting the center position from
the measured value. The result is then
scaled by the SCALE value. Since the
joystick measurements range from 0 to
32000+, the results need to be scaled for
calculating the velocities.

def check_joystick():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 ctrx = 0
 ctry = 0
 for i in range(0,100):
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8',ignore)
 joy = dat.split(',')
 if len(joy) == 6:
 ctrx = ctrx + int(joy[1])
 ctry = ctry + int(joy[0])
 ctrx = ctrx / 100
 ctry = ctry / 100
 print(ctrx,ctry)
 c.delete(msg)
 while 1:
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8',ignore)
 joy = dat.split(',')
 joyx = (int(joy[1]) - ctrx) / SCALE
 joyy = -(int(joy[0]) - ctry) / SCALE
 if abs(joyx) < .2:
 joyx = 0
 if abs(joyy) < .2:
 joyy = 0

22
Joystick Module

● And since the calibration is not perfect,
there will be a residual offset. This part of
the code sets a threshold of when to use
joyx and joyy to calculate velocities. If
the values are below .2, the variables
are set to 0. This eliminates any slow
drifting from occurring when the joystick
is left at center.

def check_joystick():
 velx = 0
 vely = 0
 posx = 500
 posy = 400
 ctrx = 0
 ctry = 0
 for i in range(0,100):
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8',ignore)
 joy = dat.split(',')
 if len(joy) == 6:
 ctrx = ctrx + int(joy[1])
 ctry = ctry + int(joy[0])
 ctrx = ctrx / 100
 ctry = ctry / 100
 print(ctrx,ctry)
 c.delete(msg)
 while 1:
 dat = s.readline()
 if dat != None:
 dat = dat.decode('utf-8',ignore)
 joy = dat.split(',')
 joyx = (int(joy[1]) - ctrx) / SCALE
 joyy = -(int(joy[0]) - ctry) / SCALE
 if abs(joyx) < .2:
 joyx = 0
 if abs(joyy) < .2:
 joyy = 0

23
Joystick Module

● Continuing in the function,
the velocity is calculated and
another scaling factor is
included. This controls the
acceleration rate.

● The position calculation and
window edge detection is the
same as the previous
program.

 if abs(joyx) < .2:
 joyx = 0
 if abs(joyy) < .2:
 joyy = 0
 velx = velx + joyx / SCALE_VEL
 vely = vely + joyy / SCALE_VEL
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 if joy[2] == '0':
 c.itemconfig(veh,fill='blue')
 if joy[3] == '0':
 c.itemconfig(veh,fill='red')
 if joy[4] == '0':
 c.itemconfig(veh,fill='green')
 if joy[5] == '0\r\n':
 c.itemconfig(veh,fill='yellow')
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

24
Joystick Module

● This portion of the code
checks the state of the
buttons and changes the
color of the square.

● Lastly, the position of the
square is updated.

● This is the end of the
function.

 if abs(joyx) < .2:
 joyx = 0
 if abs(joyy) < .2:
 joyy = 0
 velx = velx + joyx / SCALE_VEL
 vely = vely + joyy / SCALE_VEL
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 if joy[2] == '0':
 c.itemconfig(veh,fill='blue')
 if joy[3] == '0':
 c.itemconfig(veh,fill='red')
 if joy[4] == '0':
 c.itemconfig(veh,fill='green')
 if joy[5] == '0\r\n':
 c.itemconfig(veh,fill='yellow')
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

25
Joystick Module

● At the end of the program,
the thread is created and
started.

● The canvas is packed into
the window and the tkinter
mainloop() is started.

● Load and start the arduino
program and start this
program.

● Do not touch the joystick
while the calibration message
is visible. Once the message
disappears, start playing with
the joystick and buttons.

 if abs(joyx) < .2:
 joyx = 0
 if abs(joyy) < .2:
 joyy = 0
 velx = velx + joyx / SCALE_VEL
 vely = vely + joyy / SCALE_VEL
 posx = posx + velx
 posy = posy + vely
 if posx > 1000:
 posx = 0
 elif posx < 0:
 posx = 1000
 if posy > 800:
 posy = 0
 elif posy < 0:
 posy = 800
 if joy[2] == '0':
 c.itemconfig(veh,fill='blue')
 if joy[3] == '0':
 c.itemconfig(veh,fill='red')
 if joy[4] == '0':
 c.itemconfig(veh,fill='green')
 if joy[5] == '0\r\n':
 c.itemconfig(veh,fill='yellow')
 c.coords(veh,int(posx),int(posy),int(posx)+50,int(posy)+50)

x = threading.Thread(target=check_joystick)
x.start()
c.pack()
top.mainloop()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

