
1

StenBOT Robot Kit
Motors

Stensat Group LLC, Copyright 2018

2

Legal Stuff

● Stensat Group LLC assumes no responsibility and/or liability for the use of
the kit and documentation.

● There is a 90 day warranty for the Quad-Bot kit against component defects.
Damage caused by the user or owner is not covered.

● Warranty does not cover such things as over tightening nuts on
standoffs to the point of breaking off the standoff threads, breaking wires
off the motors, causing shorts to damage components, powering the
motor driver backwards, plugging the power input into an AC outlet,
applying more than 9 volts to the power input, dropping the kit, kicking
the kit, throwing the kit in fits of rage, unforeseen damage caused by the
user/owner or any other method of destruction.

● If you do cause damage, we can sell you replacement parts or you can get
most replacement parts from online hardware distributors.

● This document can be copied and printed and used by individuals who
bought the kit, classroom use, summer camp use, and anywhere the kit is
used. Stealing and using this document for profit is not allowed.

● If you need to contact us, go to www.stensat.org and click on contact us.

http://www.stensat.org/

3

References

● www.arduino.cc

● https://github.com/esp8266/Arduino

http://www.arduino.cc/

 44

Motor Control

● Controlling the motors is the same as controlling the LED except two signals
are needed.

● With two signals, you can control the direction of the motors and turn them
on and off.

● The following pages will describe how to hook up the motors.

● A motor driver module is needed. This module allows a computer to control
the motors. The motors require more power than the computer signals can
provide so the module provides the power.

● The motor driver uses what is called an H-Bridge Driver.

 55

Motor Control

Dual H-Bridge Driver is used to control the motors. It uses four transistors to
control the polarity of the voltage supplied to the motor. The transistors are used
as switches turning on and off. Below shows the H-bridge driver circuit and the
current flows.

Motor Battery

+

-

+

-

 66

Motor Control

To make the motor turn on one direction, two switches need to be turned on to
let power get to the motor. One switch connects the positive side of the battery to
to one side of the motor and another switch connects the negative side to the
other side of the motor.

Motor Battery

+

-

+

-

+-

 77

Motor Control

Flip all the switches to the opposite position and the motor turns in reverse.
Notice the polarity signs on the motor switched sides.

Motor Battery

+

-

+

-

+ -

 88

Motor Controller

● The motor controller is the interface
between the motors and the
processor board. It has circuitry to
allow control of the motors and can
handle the high currents required to
operate the motors. The processor
board cannot directly power the
motors. The controller is capable of
providing the needed current and is
used as the interface.

 99

H-Bridge Driver

● The motor controller module
consists of two H-bridge drivers to
control two motors.

● The circuit side is shown at the top
right. The square block in the
center contains the two motor
drivers.

● Power is supplied at pins GND and
BATT.

● Control signals for each motor is
IN1, IN2, IN3, IN4.

● The motors connect to the pins
marked OUTPUT and D,C,B,A.

 1010

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=0

AIN2=0

● This drawing shows how the H-Bridge driver works. Only one is shown.

● There are two signals that control the direction and operation. Control logic
decodes the two signals and turns on the appropriate switches to control the
motor. The drawing shows the condition of AIN1 and AIN2 set to logic zero.

 1111

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=1

AIN2=0

● When AIN1 is set to logic 1, the motor drives in the forward direction.

● You will notice that setting AIN1 = 1, and AIN2=0 turns on two signals that turn
on the two switches.

 1212

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=0

AIN2=1

● When AIN2 is set to logic 1, the motor drives in the reverse direction.

● You will notice that setting AIN1 = 0, and AIN2=1 turns on two signals that turn
on the two switches.

 1313

How the H-Bridge Driver Works

Control
Logic

Motor Battery

+

-

+

-

AIN1=1

AIN2=1

● When you set both AIN1 and AIN2 to logic 1, you get a breaking action.

● This turns on the two bottom switches which shorts the motor connections
together. The inductance created by the motor turning in one direction will
power the motor to turn in the opposite direction. It causes the motor to slow
down quickly.

 1414

Installing the Motor Driver

● Install four ½ inch screws into the
SLATE board in the add-on section
and secure with four nuts the same
way as was done for the sensor
boards.

● install the motor driver board on
top of the screws and secure with
nuts.

● The front end of the robot is the
end where the sensors get
installed.

 1515

Connecting Power

● Connect a jumper wire from the
pin marked + above BATTERY
on the SLATE board to the
BATT pin on the motor driver
board.

● Connect a jumper wire from the
pin marked – above BATTERY
on the SLATE board to the GND
 pin on the motor driver board.

 1616

Wiring The Motor Controller

● Use the jumper wires to
connect the motor
controller.

● Connect IN1 to D15

● Connect IN2 to D16

● Connect IN3 to D13

● Connect IN4 to D14

 1717

Wiring The Motor Controller

● Connect the left motors
to the D and C outputs
of the motor driver.

● Connect the right
motors to the A and B
outputs of the motor
driver.

● The color of the wires
for the motors may vary.
Follow the instructions
on the next page for
making sure the motors
spin in the proper
direction.

Left Motors

Right
Motors

 1818

Warning

● After the motors are connected to the SLATE, whenever you upload, you
must:

● Have the battery connected. Caution: It is possible one set of motors will
start running when uploading code. Make sure your kit does not take off
when uploading.

● or unplug the battery and disconnect the BATT wire on the motor driver.
The reason is the may motors begin pulling power from the USB port
and causes the esp comm error.

 1919

Testing the Motors

● To operate the motors, signals IN1 or IN2 on
the motor driver need to be set high or low.

● Operation is simple if IN1 and IN2 are set low,
the motors do not operate.

● If IN1 is set high and IN2 is low, the motors
will turn one direction.

● If IN1 is low and IN2 is high, the motors will
turn in the opposite direction.

● The same applies for IN3 and IN4.

● Enter the program on the right to turn the
motors on.

● See which way the wheels are turning and
swap the motor pins if needed to make the
wheels spin forward.

● These pin settings will be used for forward
motion.

void setup()
{

pinMode(13,OUTPUT);
pinMode(14,OUTPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);

}

void loop()
{

digitalWrite(13,HIGH);
digitalWrite(14,LOW);
digitalWrite(15,HIGH);
digitalWrite(16,LOW);
delay(5000);
digitalWrite(13,LOW);
digitalWrite(15,LOW);
delay(2000);

}

 2020

Direction Control

● The digital pins D13 and D14 control the right motors. (A = left)

● Setting D13 high and D14 low makes the right wheels spin forward.

● Setting D13 low and D14 high makes the right wheels spin reverse.

● Setting D13 low and D14 low turns off the motors.

● The digital pins D15 and D16 control the left motors. (B = right)

● Setting D15 high and D16 low makes the left wheels spin forward.

● Setting D15 low and D16 high makes the left wheels spin reverse.

● Setting D15 low and D16 low turns off the motors.

● Making the left motors go forward and the right motors go reverse turns the
robot right.

● Making the left motors go reverse and the right motors go forward turns the
robot left. The next page shows the code for each direction.

 2121

Direction Control Code

Forward Motion
digitalWrite(13,HIGH);
digitalWrite(14,LOW);
digitalWrite(15,HIGH);
digitalWrite(16,LOW);

Reverse Motion
digitalWrite(13,LOW);
digitalWrite(14,HIGH);
digitalWrite(15,LOW);
digitalWrite(16,HIGH);

Halt
digitalWrite(13,LOW);
digitalWrite(14,LOW);
digitalWrite(15,LOW);
digitalWrite(16,LOW);

Right Turn
digitalWrite(13,LOW);
digitalWrite(4,HIGH);
digitalWrite(15,HIGH);
digitalWrite(16,LOW);

Left Turn
digitalWrite(13,HIGH);
digitalWrite(14,LOW);
digitalWrite(15,LOW);
digitalWrite(16,HIGH);

 2222

Creating Functions

● To make programming easier,
functions will be created to specify
the motions of the robot.

● A function is a collection of
instructions that are grouped by
braces { } and given a name.

● The format is shown to the right
with one of the motions.

● The code in the loop function can
call the forward function
eliminating the need to rewrite the
digitalWrite() functions
every time.

● The motion functions should be
inserted at the top of all programs.

void forward()
{
 digitalWrite(13,HIGH);
 digitalWrite(14,LOW);
 digitalWrite(15,HIGH);
 digitalWrite(16,LOW);
}

 2323

Motion Functions

void forward()
{
 digitalWrite(13,HIGH);
 digitalWrite(14,LOW);
 digitalWrite(15,HIGH);
 digitalWrite(16,LOW);
}

void reverse()
{
 digitalWrite(13,LOW);
 digitalWrite(14,HIGH);
 digitalWrite(15,LOW);
 digitalWrite(16,HIGH);
}
void halt()
{
 digitalWrite(13,LOW);
 digitalWrite(14,LOW);
 digitalWrite(15,LOW);
 digitalWrite(16,LOW);
}

void right()
{
 digitalWrite(13,LOW);
 digitalWrite(14,HIGH);
 digitalWrite(15,HIGH);
 digitalWrite(16,LOW);
}

void left()
{
 digitalWrite(13,HIGH);
 digitalWrite(14,LOW);
 digitalWrite(15,LOW);
 digitalWrite(16,HIGH);
}

 2424

Creating a Separate Function File

● Start a new program with the
Arduino program.

● Click on the down arrow to the right
where circled in red.

● A menu will open. Select “New
Tab”

● Below, it will ask for a name.
Enter 'motion'

● Click 'OK'

● A new tab is created called
'motion'

● You will enter all the movement
functions here.

● Enter the functions listed in the
previous page.

 2525

Driving Around

● Click on the tab to the left of 'move' tab.
Enter the code to the right.

● The code to the right is a start.

● Notice the delay() function is included after
each motion function. This give the robot
time to perform that motion. The value
included in the delay function is time in
milliseconds.

● Add directions to the program and change up
the delays. Come up with a complex set of
motions. Always remember to include a
delay after the function to move the robot.

● When complete save the sketch as “move”.
Remember this sketch. The motion file will
be reused.

void setup()
{

pinMode(13,OUTPUT);
pinMode(14,OUTPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);

}

void loop()
{
 forward();
 delay(1000);
 left();
 delay(400);
 reverse();
 delay(1000);
}

 2626

Test Time

● Now that you know the basics. Write a program to make the robot move in a
square pattern.

● Use the delay() function to control how long the robot turns and moves in a
straight direction.

 2727

Speed Control

● It may be noticed that the robot may tend
to drift to the left or right. This is due to the
motors not being equally powerful.

● There is a way to attempt to equalize them
by controlling their speed.

● A simple way to control the speed is to
pulse power to the motors. This technique
is called pulse width modulation.

● On the arduino, the analogWrite()
function performs this. It generates a
repeating pulse at about 490 Hz.

● The size of each pulse is the duty cycle.
The higher the duty cycle the more power
the motor gets.

● Adjusting the duty cycle will adjust the
motor speed.

 2828

analogWrite()

● The function analogWrite() function takes two values.

● First is the pin number.

● Second is the duty cycle represented as a value from 0 to 1023.

– 0 is 0% duty cycle.

– 1023 is 100% duty cycle.

– 511 is 50% duty cycle.
● The function is written as

– analogWrite(pin,duty);

 2929

Controlling Motor Speed

● Enter the program to the right. This
program generates a PWM signal to the
motor. Only one side needs a PWM signal.
The other is set to 0 so no PWM signal is
present.

● The code sets the PWM signal to 1023
which is 100% duty cycle meaning it is on
all the time. This is the same as
digitalWrite() function.

● Run the code and see which direction the
robot drifts.

● Reduce the value for the opposite direction
by 10 and try again. Keep adjusting until
the robot drives relatively straight. It won't
be perfect.

● The analogWrite() functions can
replace the digitalWrite() functions in
the motion functions.

void setup()
{

pinMode(13,OUTPUT);
pinMode(14,OUTPUT);
pinMode(15,OUTPUT);
pinMode(16,OUTPUT);

}

void loop()
{

analogWrite(13,1023);
analogWrite(14,0);
analogWrite(15,1023);
analogWrite(16,0);
delay(5000);
analogWrite(13,0);
analogWrite(15,0);
delay(2000);

}

 3030

Motor Speed Control Functions

● New functions will be created allowing
you to control the speed of the robot.
The function here will control the speed
of robot going in the forward direction.

● This function has two arguments or
parameters that get passed to it, l and
r. These variables will control the speed
of the motors on the left side and right
side of the robot. variable l will control
the left motors and r will control the right
motors.

● Add the function to the right to the move
tab that has the original movement
functions.

void sforward(int l, int r)
{

analogWrite(13,l);
analogWrite(14,0);
analogWrite(15,r);
analogWrite(16,0);

}

 3131

Motor Speed Control Functions

● In the first tab, change the program
in the loop() function to what is in
the right.

● Upload the code and see what it
does.

● Modify the program to make the
robot move in large curves and
small curves.

● Modify the program to make the
robot move in a S pattern and then
in a circle.

● Lastly, add a function to make the
robot go backwards with adjustable
speed.

void loop()
{

sforward(1000,1000);
delay(1000);
sforward(1000,600);
delay(1000);

}

 3232

Calibrating Travel Distance

● Put the robot on the floor.

● Measure out four feet.

● Using a stopwatch, measure the time it takes to
travel the distance.

● Divide the length by time to get the robots speed
in ft/sec.

● Example: 4 feet/2.5 seconds = 1.6 ft/sec.

● Now you can calculate the amount of delay
needed to travel any distance.

● Take the distance and multiply by the
reciprocal of the robot's speed.

– Example: To travel 3.5 feet
● 3.5 * 0.625 = 2.1875 seconds
● delay(2187);

4 Feet

Start

Stop

 3333

Calibrating Turns

● Now mark on the floor a right angle. If
the floor has tiles, use the corner of a
tile for your right angle.

● Program the robot to turn right and set
the delay to 400 ms and turn off.

● Place the robot on the corner of the
right angle facing the left line.

● See how much the robot turns and
adjust the delay until it turns 90
degrees.

● Verify the value turning left and adjust
if necessary.

Floor
Tile

 3434

Obstacle Course Time

● Now for the fun part. Modify and expand the program to go through the
obstacle course shown below. The large square represent 2 foot grids.

● This attempt through the course is called dead reckoning. Write a program to
go through a sequence of motions to reach the end of the course. Adjust the
delays between each motion so the robot travels to the finish line without
going on off the squares.

● Change the course and make it more complex if you want.

S
ta

rt

Finish

