
GPS Receiver Interface

2

Introduction
● GPS is the Global Positioning

System which consists of at least 24
satellites that transmit a signal used
by a receiver to triangulate and
determine the receivers position on
earth.

● This lesson will demonstrate how to
use a GPS receiver and extract time
and position data.

https://learn.sparkfun.com/tutorials/gps-basics?_ga=2.213974164.2095582503.1609342371-165782983.1609342371&_gac=1.184328788.1609342961.CjwKCAiA57D_BRAZEiwAZcfCxdVgaODZobMdToWu0GxkcDu2Np5x_Uo27i6_8FYa0zlSI0sgOC31IxoC-3UQAvD_BwE

3

GPS Receiver
● The GPS receiver sends it’s data using a serial interface. Since the SLATE

serial interface is connected and used by the USB adapter, a digital pin will
need to be used as a serial interface.

● A software serial library will be used to use a digital pin as a serial interface.

4

GPS Receiver
● Install the GPS receiver module in one

of the sensor positions. It can be
stacked on top of another module using
the included standoffs. The standoffs
are aluminum so be careful to not over
tighten the nuts on the screws of the
standoff.

● Connect the GPS receiver GND to a
GND on the SLATE.

● Connect the GPS receiver VCC to the
UART 3V.

● Connect the GPS receiver TX pin to
digital pin 14.

5

GPS Echo
● The first program will demonstrate how to use

the Software Serial library. The program will
echo the data from the GPS receiver to the
serial monitor.

● The object gps is created as a serial interface
using pins 14 as the receiver and pin 11 as the
transmitter. Pin 11 will not be used but a
transmit pin has to be defined.

● In the setup() function, the gps serial interface
is configured to operate at 9600 baud.

● In the loop() function, as a character is received
from the GPS receiver, it is sent to the serial
interface to be displayed in the serial monitor.

#include <SoftwareSerial.h>

SoftwareSerial gps(14,11);

void setup() {
 Serial.begin(115200);
 gps.begin(9600);
}

void loop() {
 if(gps.available() > 0)
 Serial.write(gps.read());
}

6

GPS NMEA Messages
● Save the program on the previous page as gps_echo.

● Run the program and open the serial monitor. Observe the different
sentences coming from the GPS receiver.

● Notice all the GPS sentences start with $GN. After those two characters are
three characters that define the type of sentence. The sentence of interest
for now is $GNGGA. This sentence provides time, position, altitude, quality
of measurement, number of satellites and other information.

● Also, notice the data in each message is separated by commas. This is the
delimeter that will be used to extract the information.

● For information of all the different sentences, go to: http://aprs.gids.nl/nmea/

7

GPS Receiver
● the $GNGGA sentence

consists of the following:

● Time is formatted as
hhmmss.ss.

● Latitude is formatted so the
first two digits is degrees
and the of the digits
including the decimal point
in minutes.

● Longitude is formatted with
the first three digits in
degrees and the remaining
digitals minutes.

Name Example Description

Time 170834.00 Time in hhmmss.ss

Latitude 4124.8963 Latitude in degrees

N/S N North or South

Longitude 08151.6838 Longitude in degrees

E/W W East or West

Fix Quality 1 0 – invalid, 1 – GPS, 2
– DGPS

No of Sats 12 Number of satellites
being used

HDOP 1.1 Horizontal position
accuracy

Altitude 83.2 Altitude in meters

Height of GEOID -34 Height of geoid above
WGS84 ellipsoid

Time last DGPS 0 Ignore

DGPS Station 0 Ignore

Checksum 40 Checksum

8

GPS Receiver
● Fix quality indicates if

enough satellites are being
tracked to correctly calculate
the position.

● The No. of satellites
indicates how many
satellites are being used to
calculate the position. More
is generally better.

● HDOP is horizontal dilution
of position. It is an indicator
how how accurate the
position is being calculated.
Lower value is better.

Name Example Description

Time 170834.00 Time in hhmmss.ss

Latitude 4124.8963 Latitude in degrees

N/S N North or South

Longitude 08151.6838 Longitude in degrees

E/W W East or West

Fix Quality 1 0 – invalid, 1 – GPS, 2
– DGPS

No of Sats 12 Number of satellites
being used

HDOP 1.1 Horizontal position
accuracy

Altitude 83.2 Altitude in meters

Height of GEOID -34 Height of geoid above
WGS84 ellipsoid

Time last DGPS 0 Ignore

DGPS Station 0 Ignore

Checksum 40 Checksum

9

GPS Receiver
● Altitude is indicated in

meters. You will notice
altitude can vary
significantly. It is the least
accurate of the position
data.

● The height of the GEOID
can be ignored for now. For
more information on it, go to
https://www.esri.com/news/
arcuser/0703/geoid1of3.ht
ml

● Differential GPS is not used
so the last two data items
can be ignored.

Name Example Description

Time 170834.00 Time in hhmmss.ss

Latitude 4124.8963 Latitude in degrees

N/S N North or South

Longitude 08151.6838 Longitude in degrees

E/W W East or West

Fix Quality 1 0 – invalid, 1 – GPS, 2
– DGPS

No of Sats 12 Number of satellites
being used

HDOP 1.1 Horizontal position
accuracy

Altitude 83.2 Altitude in meters

Height of GEOID -34 Height of geoid above
WGS84 ellipsoid

Time last DGPS 0 Ignore

DGPS Station 0 Ignore

Checksum 40 Checksum

https://www.esri.com/news/arcuser/0703/geoid1of3.html
https://www.esri.com/news/arcuser/0703/geoid1of3.html
https://www.esri.com/news/arcuser/0703/geoid1of3.html

10

GPS Receiver
● The following code will parse the $GNGGA

sentence.

● To organize the data better, a data structure will be
created. A data structure is a way to organize
variables into a group. The structure gngga is
defined. No variable are created at this time. It will
be created later.

● The software serial interface is created and called
gps just as before. The same pins will be used.

#include <SoftwareSerial.h>
#include <string.h>

struct gngga {
 char ttag[11];
 char latitude[12];
 char northsouth;
 char longitude[12];
 char eastwest;
 float altitude;
 int sats;
 float hdop;
};

SoftwareSerial gps(14,11);

Beginning of Program

11

GPS Receiver
● This function parses the $GNGGA

sentence. The first argument is the
pointer to the sentence to be parsed.
The second argument is the pointer to
the structure.

● A pointer *token is created. The
function strtok() is used to split the
string into multiple pieces based on the
delimiter.

● The first argument is the string that is
passed. The second argument is the
delimiter character.

void getPosition(char *b,struct gngga *ptr) {
 char *token;
 token = strtok(b,",");
 token = strtok(NULL,",");
 if(strlen(token) == 1) return;
 strcpy(ptr->ttag,token);
 token = strtok(NULL,",");
 if(strlen(token) == 1) return;
 strcpy(ptr->latitude,token);
 token = strtok(NULL,",");
 ptr->northsouth = token[0];
 token = strtok(NULL,",");
 strcpy(ptr->longitude,token);
 token = strtok(NULL,",");
 ptr->eastwest = token[0];
 token = strtok(NULL,",");
 token = strtok(NULL,",");
 ptr->sats = atoi(token);
 token = strtok(NULL,",");
 ptr->hdop = atof(token);
 token = strtok(NULL,",");
 ptr->altitude = atof(token);
}

12

GPS Receiver
● In the GNGGA sentence, the time is not

always populated so it needs to be
checked if there is a value. The if()
statement checks if time is available. If
not the function returns immediately.

● If the GPS receiver has not run long
enough to determine the position, the
latitude and longitude are not filled in the
sentence. The if() statement checks if the
latitude has been filled in the sentence. If
the latitude is not available, the length is
one. This is an indication that the GPS
receiver has not been determined.

void getPosition(char *b,struct gngga *ptr) {
 char *token;
 token = strtok(b,",");
 token = strtok(NULL,",");
 if(strlen(token) == 1) return;
 strcpy(ptr->ttag,token);
 token = strtok(NULL,",");
 if(strlen(token) == 1) return;
 strcpy(ptr->latitude,token);
 token = strtok(NULL,",");
 ptr->northsouth = token[0];
 token = strtok(NULL,",");
 strcpy(ptr->longitude,token);
 token = strtok(NULL,",");
 ptr->eastwest = token[0];
 token = strtok(NULL,",");
 token = strtok(NULL,",");
 ptr->sats = atoi(token);
 token = strtok(NULL,",");
 ptr->hdop = atof(token);
 token = strtok(NULL,",");
 ptr->altitude = atof(token);
}

13

GPS Receiver
● the setup() function configures the serial

interface and the GPS serial interface.

● In the loop(), character array buf is declared
which will hold the sentence received from the
GPS receiver. The structure pos is declared.
This allocates memory to hold the group of
variables.

● The gps serial interface is checked for any
available data. If data is available, the code
inside the brackets is executed.

void setup() {
 Serial.begin(115200);
 gps.begin(9600);
}

void loop() {
 char buf[128];
 struct gngga pos;
 if(gps.available() > 0) {
 bzero(buf,128);
 gps.readBytesUntil('\n',buf,128);
 if(!strncmp("$GNGGA",buf,6)) {
 getPosition(buf,&pos);
 Serial.println(pos.ttag);
 Serial.println(pos.latitude);
 Serial.println(pos.longitude);
 Serial.println(pos.altitude,1);
 Serial.println(pos.sats);
 Serial.println(pos.hdop,2);
 }
 }
}

14

GPS Receiver
● The first thing done is the buf array is cleared

by setting all the elements to zero using the
bzero() function. This is to delete the old
sentence so no old data gets interpreted as
new data by accident. The readBytesUntil()
function does not clear the array before using it.

● The sentence is read from the GPS receiver.
The terminating character is the linefeed.

● strncmp() compares the first six bytes of the
array. If the string in quotes equals the first six
bytes of the array, the result is zero. That is why
the (!) invert symbol is used in front.

void setup() {
 Serial.begin(115200);
 gps.begin(9600);
}

void loop() {
 char buf[128];
 struct gngga pos;
 if(gps.available() > 0) {
 bzero(buf,128);
 gps.readBytesUntil('\n',buf,128);
 if(!strncmp("$GNGGA",buf,6)) {
 getPosition(buf,&pos);
 Serial.println(pos.ttag);
 Serial.println(pos.latitude);
 Serial.println(pos.longitude);
 Serial.println(pos.altitude,1);
 Serial.println(pos.sats);
 Serial.println(pos.hdop,2);
 }
 }
}

15

GPS Receiver
● Next, the position information is extracted from

the sentence by calling the getPosition()
function. The address of the buf array and the
structure are passed to the function. This is
called passing arguments by reference.

● Lastly, the information is displayed to the serial
monitor.

● Try the program.

void setup() {
 Serial.begin(115200);
 gps.begin(9600);
}

void loop() {
 char buf[128];
 struct gngga pos;
 if(gps.available() > 0) {
 bzero(buf,128);
 gps.readBytesUntil('\n',buf,128);
 if(!strncmp("$GNGGA",buf,6)) {
 getPosition(buf,&pos);
 Serial.println(pos.ttag);
 Serial.println(pos.latitude);
 Serial.println(pos.longitude);
 Serial.println(pos.altitude,1);
 Serial.println(pos.sats);
 Serial.println(pos.hdop,2);
 }
 }
}

16

GPS Receiver
● At this point, the GNGGA sentence was parsed with the position data

extracted and put into another character array. This section will show how to
convert the latitude and longitude into fractional degrees that could be used
for plotting or navigation.

● Two functions are added, one to convert latitude and the other to convert
longitude. The functions will separate the degrees from the minutes and
convert the degrees and minutes into separate floating point variables and
then combined for a complete coordinate.

17

GPS Receiver
● The first thing to do is update the

structure and add floating point variables
for the latitude and longitude.

● Variables flatitude and flongitude are
added to the structure.

#include <SoftwareSerial.h>
#include <string.h>

struct gngga {
 char ttag[11];
 char latitude[12];
 char northsouth;
 char longitude[12];
 char eastwest;
 float altitude;
 int sats;
 float hdop;
 float flatitude;
 float flongitude;
};

SoftwareSerial gps(14,11);

18

GPS Receiver
● The function convertlat() will convert the latitude to

a floating point value.

● Three variables are created in the function. degree
and minutes are the floating point variables to hold
the degrees and minutes.

● character array deg will hold the degrees digits to
be converted to floating point.

● strncpy() copies characters from the p array to deg
array. Only two characters are copied. They are the
degrees digits.

● The degrees and minutes character arrays are
converted to floating point.

● The final result is returned by adding minutes
divided by 60 to degrees.

float convertlat(char *p) {
 float degree;
 char deg[4];
 float minutes;
 strncpy(deg,p,2);
 deg[2] = 0;
 degree = atof(deg);
 minutes = atof(&p[2]);
 return degree + minutes/60.0;
}

19

GPS Receiver
● The function convertlong() will convert the

longtitude to a floating point value.

● The function is the same as convertlat() with
the only difference is 3 characters are copied
for the degrees.

float convertlong(char *p) {
 float degree;
 char deg[4];
 float minutes;
 strncpy(deg,p,3);
 deg[3] = 0;
 degree = atof(deg);
 minutes = atof(&p[3]);
 return degree + minutes/60.0;
}

20

GPS Receiver
● Update the function

getPosition() with the lines in
bold.

● The latitude is converted to
floating point. The side of the
equator is checked and if the
latitude is in the southern
hemisphere, the latitude is
made negative. This is the
standard convention.

● The longitude is converted to
floating point and if the
coordinate is in the west, it is
made negative.

void getPosition(char *b,struct gngga *ptr) {
 char *token;
 token = strtok(b,",");
 token = strtok(NULL,",");
 if(strlen(token) == 1) return;
 strcpy(ptr->ttag,token);
 token = strtok(NULL,",");
 if(strlen(token) == 1) return;
 strcpy(ptr->latitude,token);
 token = strtok(NULL,",");
 ptr->northsouth = token[0];
 token = strtok(NULL,",");
 strcpy(ptr->longitude,token);
 token = strtok(NULL,",");
 ptr->eastwest = token[0];
 token = strtok(NULL,",");
 token = strtok(NULL,",");
 ptr->sats = atoi(token);
 token = strtok(NULL,",");
 ptr->hdop = atof(token);
 token = strtok(NULL,",");
 ptr->altitude = atof(token);
 ptr->flatitude = convertlat(ptr->latitude);
 if(ptr->northsouth == 'S') ptr->flatitude = -ptr->flatitude;
 ptr->flongitude = convertlong(ptr->longitude);
 if(ptr->eastwest == 'W') ptr->flongitude = -ptr->flongitude;
}

21

GPS Receiver
● In the loop() function, add two print

statements to display the floating point
version of the latitude and longitude.

● Compile the program and run it and observe
the output.

void setup() {
 Serial.begin(115200);
 gps.begin(9600);
}

void loop() {
 char buf[128];
 struct gngga pos;
 if(gps.available() > 0) {
 bzero(buf,128);
 gps.readBytesUntil('\n',buf,128);
 if(!strncmp("$GNGGA",buf,6)) {
 getPosition(buf,&pos);
 Serial.println(pos.ttag);
 Serial.println(pos.latitude);
 Serial.println(pos.longitude);
 Serial.println(pos.altitude,1);
 Serial.println(pos.sats);
 Serial.println(pos.hdop,2);
 Serial.println(pos.flatitude,5);
 Serial.println(pos.flongitude,5);
 }
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

