
GPS Receiver Mapping

2

Mapping
● In this section, the GPS position data will be captured by a python program

and a KML file will be generated to plot positions and paths in Google Earth.

● The python program will provide a GUI to let you capture and save the
coordinates to any file.

● Open a terminal window or power shell and enter the following:

– pip3 install simplekml

– This will install the kml generating module.

● To download Google Earth, go to:

– https://www.google.com/earth/download/gep/agree.html?hl=en-GB

– Install the program.

https://www.google.com/earth/download/gep/agree.html?hl=en-GB

3

GPS Receiver
● Install the GPS receiver module in one

of the sensor positions. It can be
stacked on top of another module using
the included standoffs. The standoffs
are aluminum so be careful to not over
tighten the nuts on the screws of the
standoff.

● Connect the GPS receiver GND to a
GND on the SLATE.

● Connect the GPS receiver VCC to the
UART 3V.

● Connect the GPS receiver TX pin to
digital pin 14.

4

Mapping
● The Arduino program will be used again

from the previous GPS lesson. The print
statements will be replaced to support
generating the KML file.

● Change the program to print only the
floating point latitude and longitude with
a comma separating them. This will be
captured by the python program.

● Upload the code the SLATE and verify it
works using the serial monitor.

void setup() {
 Serial.begin(115200);
 gps.begin(9600);
}

void loop() {
 char buf[128];
 struct gngga pos;
 if(gps.available() > 0) {
 bzero(buf,128);
 gps.readBytesUntil('\n',buf,128);
 if(!strncmp("$GNGGA",buf,6)) {
 getPosition(buf,&pos);
 Serial.print(pos.flatitude,5);
 Serial.print(“,”);
 Serial.println(pos.flongitude,5);
 }
 }
}

Function getPosition() is not
shown. It is required.

5

Mapping
● Enter the program. It is spread over a few

pages.

● A few new modules are required.

– filedialog will let you open a dialog window
to select a file to save. The filedialog
module is imported and renamed fd.

– simplekml will create the KML file.

– threading will let the data be captured in
parallel with the tkinter mainloop() running.

from tkinter import *
from tkinter import filedialog as fd
import serial
import simplekml
import threading

top = Tk()
s = serial.Serial('COM4',115200)

capture = 0

def startcapture():
 global capture
 capture = 1
 print("Start capture")

def stopcapture():
 global capture
 capture = 2
 print("Stop capture")

6

Mapping
● The tkinter window is created and the

serial port is opened.

● variable capture is set to zero. This
variable will be used to determine the state
of operations.

– zero is nothing is happening

– one is data is being captured

– two is data gets saved and the capture
stops

from tkinter import *
from tkinter import filedialog as fd
import serial
import simplekml
import threading

top = Tk()
s = serial.Serial('COM4',115200)

capture = 0

def startcapture():
 global capture
 capture = 1
 print("Start capture")

def stopcapture():
 global capture
 capture = 2
 print("Stop capture")

7

Mapping
● The two functions are called by buttons that

are declared later. The startcapture()
function changes the the capture variable to
one. Notice the statement global capture at
the top of the function. This is required to use
the capture that was declared earlier. If
capture is not declared global, the function
will create its own variable that is separate
from the one declared above. The variable
would be a local variable only available in the
function and not accessible in any other part
of the program.

● The function stopcapture() changes the
global variable capture to two.

from tkinter import *
from tkinter import filedialog as fd
import serial
import simplekml
import threading

top = Tk()
s = serial.Serial('COM4',115200)

capture = 0

def startcapture():
 global capture
 capture = 1
 print("Start capture")

def stopcapture():
 global capture
 capture = 2
 print("Stop capture")

8

Mapping
● This function runs in parallel

with tkinter mainloop() as a
thread.

● The variable capture is
declared as a global
variable so it uses the one
declared in the beginning of
the program.

● variable kml is declared.
This will hold the
coordinates captured.

● List position is declared.

def capture_coords():
 global capture
 print("Starting thread")
 kml = simplekml.Kml()
 position = []
 while 1:
 a = s.readline()
 b = a.decode('utf-8','ignore')
 l1.config(text=b)
 if capture == 1:
 print(b)
 c = b.split(',')
 if len(c) == 2:
 position.append((float(c[1]),float(c[0])))
 if capture == 2:
 print("Saving kml")
 lin = kml.newlinestring(name='here',coords=position)
 filename = fd.asksaveasfilename()
 kml.save(filename)
 capture = 0

9

Mapping
● At the start of the loop, the

coordinates are read from
the SLATE and converted to
a string using the decode
function.

● Label l1 is changed to
display the coordinates
received.

def capture_coords():
 global capture
 print("Starting thread")
 kml = simplekml.Kml()
 position = []
 while 1:
 a = s.readline()
 b = a.decode('utf-8','ignore')
 l1.config(text=b)
 if capture == 1:
 print(b)
 c = b.split(',')
 if len(c) == 2:
 position.append((float(c[1]),float(c[0])))
 if capture == 2:
 print("Saving kml")
 lin = kml.newlinestring(name='here',coords=position)
 filename = fd.asksaveasfilename()
 kml.save(filename)
 capture = 0

10

Mapping
● If capture is one, the

coordinates are to be
captured. The string b is
split in two and converted to
floating point values when
appended to the list
position.

● As the function loops, the
coordinates are added to
the position list.

def capture_coords():
 global capture
 print("Starting thread")
 kml = simplekml.Kml()
 position = []
 while 1:
 a = s.readline()
 b = a.decode('utf-8','ignore')
 l1.config(text=b)
 if capture == 1:
 print(b)
 c = b.split(',')
 if len(c) == 2:
 position.append((float(c[1]),float(c[0])))
 if capture == 2:
 print("Saving kml")
 lin = kml.newlinestring(name='here',coords=position)
 filename = fd.asksaveasfilename()
 kml.save(filename)
 capture = 0

11

Mapping
● When capture is two, the

function saves the data
captured.

● A path is created with
kml.newlinestring() function.

● A file dialog window is opened
with the fd.asksaveasfilename().
The filename and path is
returned from the function and
saved in variable filename.

● kml.save() saves the position
data to the filename specified.

● capture is set to zero to go to
the idle state.

def capture_coords():
 global capture
 print("Starting thread")
 kml = simplekml.Kml()
 position = []
 while 1:
 a = s.readline()
 b = a.decode('utf-8','ignore')
 l1.config(text=b)
 if capture == 1:
 print(b)
 c = b.split(',')
 if len(c) == 2:
 position.append((float(c[1]),float(c[0])))
 if capture == 2:
 print("Saving kml")
 lin = kml.newlinestring(name='here',coords=position)
 filename = fd.asksaveasfilename()
 kml.save(filename)
 capture = 0

12

Mapping
● The last part of the program

creates the label object with
the initial text.

● Two buttons are created,
one to start the capture and
the other to stop the capture.

● Next, the capture_coords()
function is set up as a thread
to execute in parallel. The
x.start() function starts
running the thread.

● Lastly, the GUI is created
and mainloop() is executed.

l1 = Label(top,text="GPS coordinates")
b1 = Button(top,text="Start",command=startcapture,width=20)
b2 = Button(top,text="Stop",command=stopcapture,width=20)

x = threading.Thread(target=capture_coords)
x.start()
l1.pack()
b1.pack()
b2.pack()
mainloop()

13

Mapping
● Start the code on the SLATE. It will start putting out position data when the

GPS receiver acquires enough satellites.

● Start the python program. Watch the top where the coordinates are
displayed. When coordinates appear that look valid, click on the start button.

– This is when you can start travelling by car or walking around while collecting
position data.

● After some time, click on the stop button and specify the file to save the
data. Use .kml at the end of the file name.

● Start Google Earth and in Google Earth, select The File menu and select
Open. Select the file kml file saved from python. Google Earth should show
the positions on the map.

14

Displaying a Path
● A path can be shown in

Google Earth.

● The two highlighted lines set
the color and the width of the
line that will be drawn between
all the coordinates captured.

● The color is in hexadecimal
with two digits per color and
transparency. The first two
digits sets the red color, the
second two the green color,
the third pair, blue. The last
two digits sets the
transparency

def capture_coords():
 global capture
 print("Starting thread")
 kml = simplekml.Kml()
 position = []
 while 1:
 a = s.readline()
 b = a.decode('utf-8','ignore')
 l1.config(text=b)
 if capture == 1:
 print(b)
 c = b.split(',')
 if len(c) == 2:
 position.append((float(c[1]),float(c[0])))
 if capture == 2:
 print("Saving kml")
 lin = kml.newlinestring(name='here',coords=position)
 lin.style.linestyle.color = ‘#ff0000ff’
 lin.style.linestyle.width = 5
 filename = fd.asksaveasfilename()
 kml.save(filename)
 capture = 0

More details can be found at:
https://simplekml.readthedocs.io/en/latest/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

