
File System Storage

LittleFS

2

File System Storage
● There are times when storing data in a file can be useful. The data can be

collected from sensors or can be configuration data. Whatever it is, the
LittleFS library provides a way to allocate some of the SLATE program
memory for storing files.

● The SLATE processor board can be set up to support a small file system
called LittleFS. Details can be found at

● https://arduino-esp8266.readthedocs.io/en/latest/filesystem.html

● File names are limited to 31 characters.

● You program can create, write read, delete and rename files.

3

File System Storage
● SLATE boards purchased before Fall 2018 have 1Mbyte of

Program memory. New SLATES have 4Mbytes. This
memory can be divided between the program and the file
system.

● In the Tools menu, select the Flash Size menu Item. A
selection of memory configurations are provided. The file
system size is indicated by the FS: in parenthesis. For the
1Mbyte SLATE board, up to half the memory can be
allocated for the file system. The 4MByte SLATE can have
up to ¾ of the memory allocated for the file system.

● Select one. Start with 128K for the 1MByte SLATE and 1M
for the 4MByte slate.

4 Mbyte Version
Black Color

1 Mbyte Version
Blue Color

4

File System Uploader
● There is a tool that can be added to the Arduino IDE to let you upload files. You can create files for your

program to use and upload them after uploading your program.

● Go to https://github.com/earlephilhower/arduino-esp8266littlefs-plugin/releases

and download ESP8266LittleFS-2.6.0.zip or higher revision.

● Unzip the file. It will create a directory called esp8266LttleFS-2.6.0. Open the directory. There should
be ESP8266LittleFS directory.

● In the Arduino sketchbook directory where all your programs are stored, called Arduino, create a
directory named tools if it does not exist. The Arduino directory should be in the Documents
directory.

● Move the ESP8266LittleFS directory to the tools directory.

● Close the Arduino IDE and restart it. In the Tools menu, you should see ESP8266 LittleFS Data
Upload

● Remember, you have to upload your program with the filesystem space configured before uploading
files.

5

First File
● First thing to do is include the

SPIFFS library.

● In setup(), the file system is
initialized with LittleFS.begin(). This
must be done before accessing any
files.

● This example, the file writing and
reading are done in setup() so it is
only executed once.

#include <LittleFS.h>

void setup()
{
 Serial.begin(115200);
 LittleFS.begin();
 File f = LittleFS.open(“/file.txt”,”w”);
 f.println(“This is the first line”);
 f.println(“This is the second line”);
 f.close();
 delay(1000);
 f = LittleFS.open(“/file.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\n');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

6

Writing and Reading
● First, a file is created by opening a file for

writing. object f is used to access the file.
File is the object for connecting to the file in
the file system.

● The first argument is the file name. The
forward slash is required and is used to
indicate the top of the file system.

● “w” indicates writing to the file.

● f.println() writes to the file similar to how
Serial.println() works to the serial terminal.

● println(), print(), write() functions can be
used to send data to the file.

● Lastly, the file needs to be closed.

#include <LittleFS.h>

void setup()
{
 Serial.begin(115200);
 LittleFS.begin();
 File f = LittleFS.open(“/file.txt”,”w”);
 f.println(“This is the first line”);
 f.println(“This is the second line”);
 f.close();
 delay(1000);
 f = LittleFS.open(“/file.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\n');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

7

Writing and Reading
● The second half is reading the file that

was just written.

● The file is opened using the same file
name and replacing “w” with “r”.

● Then a while loop is used to read
through the whole file one line at a
time. While there is data to read from
the file, the while loop keeps
executing. Once the end of the file is
reached, the while loop exits and the
file is closed.

#include <LittleFS.h>

void setup()
{
 Serial.begin(115200);
 LittleFS.begin();
 File f = LittleFS.open(“/file.txt”,”w”);
 f.println(“This is the first line”);
 f.println(“This is the second line”);
 f.close();
 delay(1000);
 f = LittleFS.open(“/file.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\n');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

8

File System Upload
● To upload a file, you need to

create a directory in the program
sketch directory called data. Any
files placed in this directory will be
uploaded when you click on
ESP8266 Sketch Data Upload
menu under Tools menu.

● This is useful for uploading html
files, images and javascript
libraries.

Data

program

Arduino

Program.ino

Folder containing all
the sketches

Folder of
a sketch

program2

Program2.ino

File ImageFiles that get uploaded
For program.ino

9

Other File System Functions
● LittleFS.exists(“filename”);

– This returns true if the file exists.
● LittleFS.remove(“filename”);

– Deletes the file.
● LittleFS.rename(“oldfile”,”newfile”);

– Changes the file name from oldfile to newfile.

10

File Upload Test
● In a text editor, create a short text file

called mytext.txt and enter some
sentences.

● Create a new Arduino program. The
program will open the file, read the
text and send it to the serial monitor.

● Save the program with the name
readtext.

● Create the data folder in the readtext
folder.

● Copy mytext.txt file to the data folder.

#include <LittleFS.h>

void setup()
{
 Serial.begin(115200);
 LittleFS.begin();
 while(Serial.available() == 0) delay(1);
 File f = LittleFS.open(“mytext.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\r');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

11

File Upload Test
● Compile the program and upload.

● Next, click on the Tools menu and
select ESP8266 Data Upload.

● The text file will upload to the file
storage space.

● Open the serial monitor.

● At the top enter any character and
click send. This will tell the program to
start. The contents of mytext.txt should
be displayed.

#include <LittleFS.h>

void setup()
{
 Serial.begin(115200);
 LittleFS.begin();
 while(Serial.available() == 0) delay(1);
 File f = LittleFS.open(“mytext.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\r');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

12

File Upload Test
● The program is partially copied from

earlier with the write portion of the
code deleted.

● The first highlighted line of code is
added to allow you to open the serial
monitor before the file contents get
displayed.

● In the second highlighted line, the
readStringUntil() includes the carriage
return code. For Mac users, replace
that with \n.

#include <LittleFS.h>

void setup()
{
 Serial.begin(115200);
 LittleFS.begin();
 while(Serial.available() == 0) delay(1);
 File f = LittleFS.open(“mytext.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\r');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

