
Micro SD Card Module

2

Introduction
● The MicroSD card module allows you to use

a microSD card for data storage. The SD
library supports the FAT file system which
has a 2 GB size limit.

● The interface to the Micro SD card is
through the SPI port or Serial Peripheral
Interface port. Specific pins are used.

● The CS pin can be assigned to any pin.

● The other pins cannot be moved. They are
dedicated to the SPI port.

Signal Description Pin

CS Chip Select 15

DI Data In 13

DO Data Out 12

SCLK Serial Clock 14

https://en.wikipedia.org/wiki/SD_card

3

Connecting
● Make the connections as shown.

– 3.3V from the UART to 3.3 on the module

– GND to GND

– DAT0 to D12

– CLK to D14

– CMD to D13

– CD to D15

4

Requirements
● The SD library is included in Arduino.

● The library does not have a function to format the SD card. It must be
formatted on another computer and must be in the FAT format. No other
formats are supported.

● The SD card must be installed when powering up before the program
accesses the SD card.

5

Example Program
● The example will create a file and

write a sentence and then open the
file and read the sentence back.

● At the top, the library for the SPI
port is included along with the SD
library.

● A file object fd is declared.

#include <SPI.h>
#include <SD.h>

File fd;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("test.txt",FILE_WRITE);
 if(fd) {
 fd.println("This is a sentence2");
 fd.close();
 } else Serial.println("Error openning");
 fd = SD.open("test.txt");
 if(fd) {
 Serial.println(fd.size());
 while(fd.available()) {
 Serial.write(fd.read());
 }
 fd.close();
 } else Serial.println("File can't open");
}

void loop() {
}

6

Example Program
● The SD has to be initialized first.

This is not formatting the SD card
but setting up the interface. The CS
pin is specified.

● If there is an error in setting up the
interface, the program exits the
setup() function without attempting
to write to a file.

#include <SPI.h>
#include <SD.h>

File fd;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("test.txt",FILE_WRITE);
 if(fd) {
 fd.println("This is a sentence2");
 fd.close();
 } else Serial.println("Error openning");
 fd = SD.open("test.txt");
 if(fd) {
 Serial.println(fd.size());
 while(fd.available()) {
 Serial.write(fd.read());
 }
 fd.close();
 } else Serial.println("File can't open");
}

void loop() {
}

7

Example Program
● Next, a file is opened for writing.

The file name is in quotes and
FILE_WRITE specifies writing.

● If the file is successfully opened, the
sentence is written into the file and
the file is then closed. If there was
an error, an error message would
be displayed on the serial monitor.

● If the file exists, anything written to
the file is added to what exists in the
file.

#include <SPI.h>
#include <SD.h>

File fd;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("test.txt",FILE_WRITE);
 if(fd) {
 fd.println("This is a sentence2");
 fd.close();
 } else Serial.println("Error openning");
 fd = SD.open("test.txt");
 if(fd) {
 Serial.println(fd.size());
 while(fd.available()) {
 Serial.write(fd.read());
 }
 fd.close();
 } else Serial.println("File can't open");
}

void loop() {
}

8

Example Program
● The file is opened again. This time,

only the file name is specified. This
automatically sets the file to be
read.

● If the file is successfully opened, the
size of the file is displayed.

● the while() loop reads all the data in
the file.

● When the while() loop exits, the file
is closed.

● If the file cannot be opened, an
error message is displayed.

#include <SPI.h>
#include <SD.h>

File fd;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("test.txt",FILE_WRITE);
 if(fd) {
 fd.println("This is a sentence2");
 fd.close();
 } else Serial.println("Error openning");
 fd = SD.open("test.txt");
 if(fd) {
 Serial.println(fd.size());
 while(fd.available()) {
 Serial.write(fd.read());
 }
 fd.close();
 } else Serial.println("File can't open");
}

void loop() {
}

9

Other Functions
● The SD library includes other functions

– SD.exists(“filename”) will return a 1 if the file exists or 0 if it does not.

– SD.mkdir(“directory”) will create a directory on the SD card. Multiple levels of
directories are allowed.

– SD.remove(“filename”) will delete the specified file.

– SD.rmdir(“directory”) will delete the specified directory.

– size() will return the size of the file that is opened.

10

Data Logging
● This code collects analog voltage from the

ADC port at 10 samples per second for 10
seconds. It will save the data with a time tag
into file data.csv. You can take the SD card to
another computer and retrieve the data and
import it into a spreadsheet as a CSV
formatted file.

#include <SPI.h>
#include <SD.h>

File fd;
int count = 0;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("data.csv",FILE_WRITE);
 if(!fd) {
 Serial.println("Error openning");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd.print(t);fd.print(“,”);
 fd.println(a);
 count++;
 if(count > 1000) {
 fd.close();
 Serial.println(“Done”);
 while(1) delay(100);
 }
 delay(100);
}

11

Data Logging
● Variable count is initialized to zero. This will

count the number of samples to save.

● In setup(), the SD card is initialized and the
file is created or opened if it exists.

● If an error occurs, the program exits the
setup() function. Nothing else will execute
properly.

#include <SPI.h>
#include <SD.h>

File fd;
int count = 0;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("data.csv",FILE_WRITE);
 if(!fd){
 Serial.println("Error openning");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd.print(t);fd.print(“,”);
 fd.println(a);
 count++;
 if(count > 1000) {
 fd.close();
 Serial.println(“Done”);
 while(1) delay(100);
 }
 delay(100);
}

12

Data Logging
● In the loop() function, the analog port value is

read.

● The next line reads the time in milliseconds.
The millis() function returns the number of
milliseconds since the start of the program.

● Next, the data is written to the file the same
was as it would be sent to the serial interface.

● A comma is inserted between the time and the
ADC value. This is the csv format.

#include <SPI.h>
#include <SD.h>

File fd;
int count = 0;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("data.csv",FILE_WRITE);
 if(!fd) {
 Serial.println("Error openning");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd.print(t);fd.print(“,”);
 fd.println(a);
 count++;
 if(count > 1000) {
 fd.close();
 Serial.println(“Done”);
 while(1) delay(100);
 }
 delay(100);
}

13

Data Logging
● In this section of the code, the count is

incremented by one.

● The count is checked to see if more than a
1000 samples has been collected.

● If more than 1000 samples have been
collected, the file is closed the and program
loops forever executing the delay(100). This is
required to keep the processor from crashing.
The delay function allows the processor to
handle other background operations. It’s just
how the software works. A watchdog timer is
reset in the background. If it isn’t the processor
reboots and the program will restart.

#include <SPI.h>
#include <SD.h>

File fd;
int count = 0;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("data.csv",FILE_WRITE);
 if(!fd) {
 Serial.println("Error openning");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd.print(t);fd.print(“,”);
 fd.println(a);
 count++;
 if(count > 1000) {
 fd.close();
 Serial.println(“Done”);
 while(1) delay(100);
 }
 delay(100);
}

14

Data Logging
● The last line of code is the delay(100). This sets the

loop() operation to occur at a 10 Hz rate so
samples are collected 10 times per second.

● Connect the temperature sensor to the ADC port.
Upload and run the program. While the program is
running, touch the temperature sensor to change
the temperature. Let it go and touch it at different
intervals over about a 100 second period until the
program displays done in the serial monitor.

● Remove the SD card and connect it to another
computer and import the file into a spreadsheet.
You should be able to plot the data with the first
column time and the second the ADC value. You
can convert the ADC value to a temperature in the
spreadsheet.

#include <SPI.h>
#include <SD.h>

File fd;
int count = 0;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
 fd = SD.open("data.csv",FILE_WRITE);
 if(!fd) {
 Serial.println("Error openning");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd.print(t);fd.print(“,”);
 fd.println(a);
 count++;
 if(count > 1000) {
 fd.close();
 Serial.println(“Done”);
 while(1) delay(100);
 }
 delay(100);
}

15

Long Duration Open Ended Data Collection
● This example shows how to collect data at a slow

interval and for an unknown duration. This will allow you
to stop the program at any time and retrieve the SD card
without the worry of corrupting the SD card.

● The library for using the SD card will buffer a certain
amount in memory before writing. Removing the card
before it is written cause the loss of data.

● Removing the SD card before the file is closed can
corrupt the data file.

● The next example shows the sequence to avoid loss of
data and corruption of the file.

16

Long Duration Open Ended Data Collection
● The code is similar to before but samples the

temperature sensor once every 10 seconds.

● In the setup() function, only the SD card
interface is initialized.

● In the loop() function, the temperature sensor
is sampled and the time is captured in
milliseconds.

● Next, the file is opened. If the file does not
exist, it will be created. If it exists, the new
data is appended to the existing file.

#include <SPI.h>
#include <SD.h>

File fd;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd = SD.open("long.csv",FILE_WRITE);
 if(!fd){
 Serial.println("Error opening");
 return;
 }
 fd.print(t);fd.print(“,”);
 fd.println(a);
 Serial.println(“Wrote sample”);
 fd.close();
 delay(10000);
}

17

Long Duration Open Ended Data Collection
● The file is then closed right after sending the data to

the SD card. This forces the file to be immediately
updated and properly closed.

● The program then waits 10 seconds before capturing
the next sample.

● You can run the program and let it run for several
hours in a room or outside and collect temperature
data over time.

● You can the same thing with the light sensor
connected. Point it out a window and see how the
daylight varies over time.

● To relate it to actual time, you need to manually
record the time you started the program.

#include <SPI.h>
#include <SD.h>

File fd;

void setup() {
 Serial.begin(115200);
 Serial.println("\nStarting code");
 if(!SD.begin(15)) {
 Serial.println("Error init");
 return;
 }
}

void loop() {
 int a = analogRead(0);
 unsigned long t = millis();
 fd = SD.open("long.csv",FILE_WRITE);
 if(!fd){
 Serial.println("Error opening");
 return;
 }
 fd.print(t);fd.print(“,”);
 fd.println(a);
 Serial.println(“Wrote sample”);
 fd.close();
 delay(10000);
}

18

Reading a Data File
● The python code will open

a text file and read each
line. A dialog window will
open asking to select the
file.

● The first part is importing
the needed modules and
creating object top for Tk.

from tkinter import *
from tkinter import filedialog as fd

top = Tk()

def readfile():
 filen = fd.askopenfilename()
 fd = open(filen,”r”)
 while 1:
 line = fd.readline()
 if not line:
 break
 print(line);
 fd.close()

l1 = Label(top,text="File Reader")
b1 = Button(top,text="Read Data",command=readfile)

l1.pack()
b1.pack()
mainloop()

19

Reading a Data File
● The next part is creating a function to

read the file and display the
contents.

● A request for the filename is made
using the askopenfilename()
function.

● The selected file is then opened with
the open() function. The open
function takes two arguments, a file
name and how to open it.

– “r” is read

– “w” is write or overwrite existing file.

– “a” is append to existing file

from tkinter import *
from tkinter import filedialog as fd

top = Tk()

def readfile():
 filen = fd.askopenfilename()
 fd = open(filen,”r”)
 while 1:
 line = fd.readline()
 if not line:
 break
 print(line);
 fd.close()

l1 = Label(top,text="File Reader")
b1 = Button(top,text="Read Data",command=readfile)

l1.pack()
b1.pack()
mainloop()

20

Reading a Data File
● In the while loop, one line is read.

readline() will read in text until an
end of line character is detected
such as carriage return or line
feed.

● Notice the if not line: if variable
line is empty, that means the end
of the file so the break command is
executed which causes the
program to exit the while loop. The
file is closed and the function ends
execution.

from tkinter import *
from tkinter import filedialog as fd

top = Tk()

def readfile():
 filen = fd.askopenfilename()
 fd = open(filen,”r”)
 while 1:
 line = fd.readline()
 if not line:
 break
 print(line);
 fd.close()

l1 = Label(top,text="File Reader")
b1 = Button(top,text="Read Data",command=readfile)

l1.pack()
b1.pack()
mainloop()

21

Reading a Data File
● Continuing with the program, a

label is created and a button is
created. When the button is
clicked, the readfile() function will
execute.

● The last three lines set up the
window with the label above the
button.

● mainloop() scans for the button to
be pressed and executes the
readfile() function.

from tkinter import *
from tkinter import filedialog as fd

top = Tk()

def readfile():
 filen = fd.askopenfilename()
 fd = open(filen,”r”)
 while 1:
 line = fd.readline()
 if not line:
 break
 print(line);
 fd.close()

l1 = Label(top,text="File Reader")
b1 = Button(top,text="Read Data",command=readfile)

l1.pack()
b1.pack()
mainloop()

22

Reading a Data File
● Insert the SD card into the

computer and run the python
program.

● Select a file from the SD card.

● The contents of the file should be
displayed in the python IDE
window.

from tkinter import *
from tkinter import filedialog as fd

top = Tk()

def readfile():
 filen = fd.askopenfilename()
 fd = open(filen,”r”)
 while 1:
 line = fd.readline()
 if not line:
 break
 print(line);
 fd.close()

l1 = Label(top,text="File Reader")
b1 = Button(top,text="Read Data",command=readfile)

l1.pack()
b1.pack()
mainloop()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

