Building a GUI
From
Scratch

1

Stensat Group _,/$

Processing Graphical User Interface

In this lesson, you will learn how to create some simple GUI objects
to control the robot. The GUI objects will be sliders and a joystick.

GUI libraries could be used but most do not work as needed.

For the robot, there is a robotic arm with three servos that need to be
controlled. They will be controlled with sliders.

For motion control, a joystick will be created to drive and steer the
robot.

System Architecture

e A system architecture needs
to be defined.

 The system architecture here
consists of a laptop running a
GUI control program with a
WIiFi interface and a robot with
a robotic arm and a WiFi
Interface.

e The communication method
will be wireless using WiFi.

ArduinG

oGuUl
Control
- Program -

/

robot

3

Stensat Group . /@

System Architecture

* WIFI requires an access S oGul

point and clients. | Lontrol
- Program -

* The robot WiFi will act as
an access point requiring
the computer running the
GUI control program to
connect to the robot as a
client.

 Arduino
| robot
- Program

Stensat Group . /3

System Protocol

Now that the method of communications has been defined, how
Information is passed or structured needs to be defined.

A protocol or command format needs to be defined. A simple protocol
will be defined here. It will consist of four bytes. The first byte will be
the header and is set to an arbitrary value of ASCII character 'C'. The
rest of the bytes will be used to control the operation of the robot. The
protocol is shown below.

Header Left Right Base

'C' Byte Byte Byte

System Protocol

The second byte is called Left and will control the direction and speed
of the left wheel.

The third byte is called Right and will control the direction and speed
of the right wheel.

The fourth byte is called Base and controls the position of the base
servo on the robotic arm.

The fifth byte is called Arm and controls the arm servo.

The sixth byte is called Elbow and controls the elbow servo.

Header Left Right Base

'C' Byte Byte Byte

System Protocol

The PWM value range for the motors is 0 to 1023. This is a 10 bit
number which is larger than a byte (8 bits). Since fine speed control is
really not needed, one byte will be used to control the speed and
direction of the robot motors.

A byte has a range of 0 to 255. The mid point is 127. The value 127
will be defined as the stop state for the motors.

The range of 0 to 126 will be the reverse speed with 0 being the
fastest and 126 the slowed. The range of 128 to 255 will be the
forward speed with 255 being the fastest and 128 being the slowest.

For the robot, the mapping and direction will be mapped from O to 255
to -1023 to 1023.

255 Forward

127

Stop

0
Reverse -1023 0 1023 Stensat Group AT

Design of the Program

« The program can be
broken into three parts

Initialize

- Initialization
- Drawing
-
- Check for input and
update the state of the
robot Draw the GUI
Objects

|

Check for Inputs
Update State

8

Stensat Group . /$

GUI Layout

 Three sliders need to be created to control the robotic arm and
a joystick needs to be created for robot motion control.

« All the controls will be laid out horizontally.

GUI Object Locations

* Next is creating a layout of the window. The window will be set to 800
by 600 pixels.

« The sliders will be 400 pixels tall and 100 pixels wide.
* The joystick will be 400 by 400 pixels.

GUI Object Locations

 The objects will be located with the window coordinates shown.

 The numbers indicate the top left corner and the bottom right corner.
These values will be used as boundaries for each control to
determine if the mouse is controlling the particular control.

100,100 300,100

BASE \ DRIVE

100,500 700,500

Setting Up

Slider positions need to be
tracked and updated based
on user input.

Variables will be used to
store the current position of
the sliders and joystick.

The setup() funtion is
where the window is
created and the position
variables set.

The text size for the labels
IS set to 24 point font.

textAlign() will center text
around the position
specified.

int base;
int Jjx,Jjy;

void setup() {
size(800,600);

base = 250;
jx = 500;
Jy = 300;

textSize(24);
textAlign(CENTER) ;

Drawing

In the draw function, the
GUI objects will be
rendered. Since draw() is
executed repeatedly, the
objects will be redrawn
repeatedly. This allows
automatic update of the
slider positions.

First, the background slider
and joystick objects are
generated.

int base;
int jx,Jjy;

void setup() {

}

size(1200,700);

base = 300;
jx = 500;
Jy = 300;

textSize(24);
textAlign (CENTER) ;

void draw() {

background(0); // clear display
£il1ll(150); // set color to grey
rect(100,100,20,400,5);
rect(300,100,400,400,10);

Drawing

Labels are added to the
GUI display. The positions
are below the slider and
joystick and centered.

setup() function not shown to save space

void draw() {
£ill1(150); // set color to grey
rect(100,100,20,400,5);
rect(300,100,400,400,10); £ill(255);
text (“BASE”,110,550);
text (“DIRECTION”,500,550);

Stensat Group .

14

Drawing

The slider and joystick
position controls are
generated with ellipses.

The Y position of the
sliders are variables
allowing them to be

moved up and down.

The joystick has
variables for both X and
Y position.

Run the program to see
the layout.

setup() function not shown to save space

void draw() {
£ill1(150); // set color to grey
rect(100,100,20,400,5);
rect(300,100,400,400,10); £ill(255);
text (“BASE”,110,550);
text (“DIRECTION”,500,550);
ellipse(110,base,50,50);
ellipse(jx,Jjy,100,100);

M s
Stensat Group

Drawing

Next is to detect used
iInput. The only input
required is detecting
when the mouse button
IS pressed and the
location of the mouse.
This also works for touch
screens.

When the mouse button |,

void draw() {

£i11(150); // set color to grey
rect(100,100,20,400,5);
rect(300,100,400,400,10);
text (“BASE”,110,550);
text (“DIRECTION”,500,550);
£i11(200,40,40);
ellipse(110,base,50,50);
ellipse(jx,Jjy,100,100);
if (mousePressed) {

check base();

check joystick();
}

£i11(255);

IS pressed, the four
functions will be
executed. Each function
will test a specific slider
or joystick.

Drawing

« Below the draw() function, void check base() {
add the two functions for if ((mouseX > 50) && (mouseX < 150)) {
h k h Id d if((mouseY > 100) && (mouseY < 500)) {
.C eC. |ngt € Slider an base = (int)mouseY;
joystick. } }
« To the right is the '

check base() function. It
checks if the mouse button
IS In the boundary area of
the base slider. If it Is, the
base slider control position
IS updated to the current
mouse Y position.

Drawing

° TO the ”ght iS the void check joystick() {
check_joystick() function. It IR foLEes > 00 B8 (menseX < T00)) |
. if((mouseY > 100) && (mouseY < 500)) {
checks if the mouse button jy = (int)mousey;
IS In the area of the joystick. } Jx = (int)mouseX;
If it is, the joystick control)
position is updated to the]
current mouse X and Y
position,

e Run the program. The
sliders and joystick controls
should move.

18
Stensat Group T

Drawing

Notice the joystick position does not
go back to center when the mouse
button is released. Code has to be
added to make that happen.

The function mouseReleased() will
be used to reposition the joystick
control when the mouse button is
released.

Add the function to the end of the
program.

Run the program again and check
the joystick.

void mouseReleased() {
jx 500;
Jy = 300;

}

Robot Control

« At this point, the GUI is built and operational. The code needs to be
updated to control the robot via WiFi link.

 The network library needs to be added and new code needs to be
added to portions of the program.

« For simplicity, the new code will be added after all the GUI control
checks. The variables base, arm, elbow, jx and jy will be used to
calculate servo position values and motor drive speed for the robot.

Adding Network Library

Move the cursor to the top
of the program.

Include the network library.

Add a network client object
C.

Add a byte array below it.

In the setup() function, add
the line to connect to the
robot.

import processing.net.?*;

Client c;
byte[] cmd = new byte[6];

int base;
int Jjx,Jjy;

void setup() {
size(800,600);

base = 250;
jx = 500;
jy = 300;

textSize(24);
textAlign (CENTER);
c = new Client(this,”192

}

.168.4.1”7,80);

Adding Network Library

The byte array cmd will be
the command bytes sent to
the robot. It is a 6 byte
command packet. The first
byte is set to the letter C. This
IS the header of the packet.

The next byte will be the left
motor speed control

The third byte will be the right
motors speed control

The fourth byte is the robotic
arm base servo.

The fifth byte is the robotic
arm arm servo.

The sixth byte is the robotic
arm elbow servo.

import processing.net.*;

Client c;
byte[] cmd = new byte[6];

int base;
int jx,Jy;

void setup() {
size(800,600);

base = 250;
jx = 500;
Jy = 300;

textSize(24);
textAlign (CENTER);
c = new Client(this,”192.168.4.17,80);

}

Adding Network Library

The byte array needs to be
Initialized.

The header is set to 'C'.
The motors are set to 0.

The servos are setto 179
degrees.

This completes all changes to
the setup() function.

void setup() {
size(800,600);

base = 250;
jx = 500;
jy = 300;

textSize(24);
textAlign (CENTER);
c = new Client(this,”192.168.4.1",80);

cmd[0] = 'C'; // header
cmd[1] = (byte)O; // left motor
cmd[2] = (byte)O; // right motor
cmd[3] = (byte)90; // base servo

Robot Control

« At the end of the draw()

function, the servo
angle calculations will
be added. The map()
function will be used to
translate the slider
control position to the
servo angle. For the
base servo, the angle
will have a range of 1 to
179.

The slider position
range is 100 to 500.

void draw() {

£i11(150); // set color to grey
rect(100,100,20,400,5);
rect(300,100,400,400,10); £il1(255);
text (“BASE”,110,550);
text (“DIRECTION”,500,550);
£i11(200,40,40);
ellipse(110,base,50,50);
ellipse(jx,Jjy,100,100);
if (mousePressed) {

check base();

check joystick();
}
float anglel = map(base,100,500,1,179);

Robot Control

* The joystick position is
converted to motor
speed and direction for
the left and right
motors.

void draw() {

£i1l1(150); // set color to grey
rect(100,100,20,400,5);
rect(300,100,400,400,10); £ill(255);
text (“BASE”,110,550);
text (“DIRECTION",500,550);
£i11(200,40,40);
ellipse(110,base,50,50);
ellipse(jx,Jjy,100,100);
if (mousePressed) {

check base();

check joystick();
}
float anglel = map(base,100,500,1,179);
float drive = map(jy,100,500,1,-1);
float steer = map(jx,300,700,-1,1);
float left = (drive + steer) * 255.0;
float right = (drive — steer) * 255.0;
left= constrain(left, -255,255);
right = constrain(right,-255,255);
left = map(left,-255,255,0,255);
right = map(right,-255,255,0,255);

Robot Control

All the calculated
angles and motor
speed is then copied to
the command packet.
The command packet is
made up of bytes so the
variables are type
casted which converts
the values to byte size
values.

The c.write() function
sends the command
packet to the robot over
the network connection.

Above code not shown to save space

}

ellipse(jx,Jjy,100,100);
if (mousePressed) {
check base();
check joystick();
}

float anglel = map(base,100,500,1,179);
float drive = map(jy,100,500,1,-1);

= map(jx,300,700,-1,1);
float left = (drive + steer) * 255.0;
float right = (drive — steer) * 255.0;
left= constrain(left, -255,255);
right = constrain(right,-255,255);
left = map(left,-255,255,0,255);
right = map(right,-255,255,0,255);

float steer

cmd[1l] = (byte)left;
cmd[2] = (byte)right;
cmd[3] = (byte)base;

c.write(cmd);

Programming the Robot

 Now that the graphical user interface has been written, it is time to
write the program for the robot to receive the command packet and

process it.

 The code to initialize should be familiar as they were used in previous
sections.

27

Stensat Group /®

Robot Program

e The program starts with the 4include <Servo.h>
same include files as in the $include <ESP8266WiFi.h>
first WiFi lesson. The only o ,

. . . WiFiClient client;
extra include file is for the WiFiServer server(80);

servo so the robotic arms can
be controlled.

28
Stensat Group . /®

Robot Program

« Create servo objects for each
joint of the robotic arm.

e Create the char array for the
command packet.

#include <Servo.h>

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server (

Servo base;

unsigned char cmd]|

80);

41;

Stensat Group .

29

Robot Program

Initialize the four pins for void setup() {

controlling the wheels. SHEEL oG e (LLEALO)
pinMode (13, 0UTPUT) ;

S pinMode (14,0UTPUT) ;

Set up the WiFi to operate as SO i s

an access point. pinMode (16 ,0UTPUT) ;
WiFi.mode(WIFI_AP) H

Set up the three ports to WiFi.softAP(“myrover”);
server.begin();

operate as servo controllers. base.attach(0)

Preposition the robotic arm base.write(90);

into a safe position. .

This completes the
Initialization. Next is the loop()
function that is added after the
setup() function.

Robot Loop()

In this section, the
loop function will do
multiple things.

It will check to see if a
client (laptop) has
connected.

It will then look for a
command packet.

Once a command
packet is received, it
will process it and
update the state of the
motors and servos.

The flow chart to the
right shows the code
flow.

-

Start Loop

Packet
Received

Client
Connected
Still?

/ ~ Update
Process Motors
Command ~ Servos

31
Stensat Group .)

Robot Loop()

e The flow chart helps
show how the
program operates.
The diamonds are
decisions the program

makes using
commands like if().
The rectangles are the
actions taken such as
adjusting the servo
angles and the speed
of the motors.

Start Loop

-

Packet
Received

Client
Connected
Still?

Process Motors
CEMTEGTE ~ Servos

32

Stensat Group . /@

Robot loop()

« First thing to do in the void loop() {
code is to check if a client = server.available();

client has connected
to the robot.

e First, the
server.available()
function returns a
value indicating if a
client has connected.
If not, a zero Is
returned. If so a
number Is returned
assigned to the client.
Multiple clients can
connect and each one
gets a unique number.

33
Stensat Group T

Robot loop()

The check for a connected
client is a simple if()
statement.

You notice a comparison
statement is not used Iin the
If() statement. The variable
client can be used to
determine if the result is
true or false. False is
Indicated by the value zero.
Any other value is
considered true.

A diagnostic print statement
IS included so we can tell
when a client connects.

void loop() {
client = server.available();
if(client) {
Serial.println(“Connected”);

Robot loop()

 Awhile() loop will be void loop() {
used 1{0) determine client = server.available();
. if(client) {
When the C“ent Serial.println(“Connected”);
disconnects. Again, as while(client.connected()) {
long as

client.connected()
does not return a
zero, the while() loop
will continue to
execute.

35
Stensat Group /®

Robot loop()

Now there is a check for a
command packet. There is
another while() loop waiting
for data to be sent from the
client. This while() loop also
checks to see if the client
disconnected. If this check
does not occur and the client
does disconnect, the while
loop would never exit.

break is a command to force
the exit of the while() loop
regardless of the results of
the condition in the while()
statement.

void loop() {
client = server.available();
if(client) {
Serial.println(“Connected”);

while(client.connected()) {
while(client.available() == 0) {
if(!client.connected()) break;
delay(1l);

}

Once data is available, one
byte is read and checked if it
IS the heading for the
command packet. The
heading byte is C.

Robot loop()

void loop() {
client = server.available();
if(client) {
Serial.println(“Connected”);

while(client.connected()) {
while(client.available() == 0) {
if(!client.connected()) break;
delay(1l);

}

char a = client.read();
if(a == 'C") {

Stensat Group

 |f the heading is correct, the
rest of the command packet
IS read into cmd array.

« function readBytes(var,num);
simplifies getting the whole
command. It moves a
specified number of bytes
Into an array.

Robot loop()

void loop() {
client = server.available();
if(client) {
Serial.println(“Connected”);
while(client.connected()) {
while(client.available() == 0) {
if(!client.connected()) break;
delay(1l);

}
char a = client.read();
if(a == 'C') {

client.readBytes(cmd, 3);

o s
Stensat Group

Robot loop()

* Now, the command bytes are
processed.

 The servo positions are
updated for each joint.

void loop() {
client = server.available();
if(client) {
Serial.println(“Connected”);
while(client.connected()) {
while(client.available() == 0) {
if(!client.connected()) break;
delay(1l);

}
char a = client.read();
if(a == 'C') {

client.readBytes(cmd, 3);
base.write(cmd[2]);

39

Stensat Group .

Robot loop()

 The speed of the motors
are mapped from the
range of 0 to 255 to a
range of -1023 to 1023.

« The PWM range for the
motors is 0 to 1023.

 The negative numbers will
be used for direction
control.

void loop() {
client = server.available();
if(client) {
Serial.println(“Connected”);
while(client.connected()) {

while(client.available() == 0) {
if(!client.connected()) break;
delay(1l);

}

char a = client.read();

if(a == 'Cc') {
client.readBytes(cmd, 3);
base.write(cmd[2]);
int left = map(cmd[0],0,255,-1023,1023);
int right = map(cmd[1],0,255,-1023,1023);

Robot loop()

* Now, the motor speed is int left = map(cmd[0],0,255,-1023,1023);
set. int right = map(cmd[1],0,255,-1023,1023);
if(left > 0) {
analogWrite(15,1left);

* First the direction is analogWrite(16,0);

checked. If the value is } else {
.y analogWrite(l6,-1left);
positive, the motors are analogrite(15.0);
set to the speed by }
. if(right > 0) {
setting the duty cycle of N P Y v
one digital port to the analogWrite(14,0);
} else {
value and the other to L SR
Zero. analogWrite(13,0);
}
}
}
Serial.println(“Disconnected”);
}

Robot loop()

 If the value is negative, int left = map(cmd[0],0,255,-1023,1023);
the Opposite d|g|ta| port J:_nt right = map(cmd[1],0,255,-1023,1023);
) . if(left > 0) {
IS set to the negative of analogirite(15,left)
the negative value which EBELogElER| LE, 0 7
k . .- Th } else {
makes It posmve: e analogWrite(16,-left);
other digital port is set to } analogWrite(15,0);
ZETrO0. if (right > 0) {
analogWrite(13,right);
« Afterwards, the rest of analogWrite(14,0);
: } else {
the COde 1S Close analogWrite(14,-right);
brackets to close out the analogWrite(13,0);
while() loops and if() } .
statements. }
Serial.println(“Disconnected”);
e The print statement at }
the end lets you know if *

the client disconnected.

42

4 /'\)

esting

To test, upload the robot code into the robot processor.
Connect the laptop to the Robot access point.

Once connected, run the GUI program.

Operate the robot.

If some things do not work, insert Serial.println() statements in the
robot code to print out variables to see if commands are formatted

properly.

43
Stensat Group /®

End

44
Stensat Group M\/®

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

