
MPU-6050 6 Axis IMU

Stensat Group LLC, Copyright 2018

 2

Introduction

● The MPU-6050 is a six degree of freedom Inertial Measurement Unit.
It consists of a 3-axis accelerometer and a 3-axis rate gyroscope.

● The accelerometer has a settable sensitivity range of 2Gs to 16 Gs.

● The rate gyroscope has a settable sensitivity range of 250 degrees
per second to 5000 degrees per second.

● In this lesson, the rate gyro will be used to determine orientation. The
library includes functions for calculating the angle of the sensor after
it is calibrated. A processing program will be used to graphically
demonstrate the orientation of the sensor.

https://en.wikipedia.org/wiki/Inertial_measurement_unit

 3

Connect the MPU-6050

● Connect the MPU-6050 to the I2C bus on the SLATE board.

● Connect the sensor VIN to the SLATE 3.3V.

● Connect the sensor GND to the SLATE GND.

● Connect the sensor SCL to the SLATE D5 SCL.

● Connect the sensor SDA to the SLATE D4 SDA.

 4

MPU-6050 Library

● Download the library from www.stensat.org. This library was modified to work
properly on the ESP8266 SLATE board.

● In the Arduino IDE, select the Sketch menu and then select Include Library.
Select Add .ZIP file. Locate the file and select it. It will be added to your library.

● In the File menu, select Examples then locate MPU6050_tockn. Select
GetAllData. The program will open in a window.

– Before compiling, make the following changes:

– Line 11, Wire.begin(); ==> Wire.begin(4,5);

– Line 12, mpu6050.begin(); ==> mpu6050.begin(ACCEL_2G,GYRO_500);

– Change line 10 baud rate from 9600 to 115200.

● Compile and upload the program.

● When done uploading, open the Serial monitor and make sure the baud rate is
set to 115200.

● When the program starts, it will spend about 3 seconds calibrating. Make sure
the sensor is not moving during this time. It will calibrate right after the code
finishes uploading.

http://www.stensat.org/

 5

The Code

● In the program, the sensor library is included at line 2. Line 3 loads
the I2C library.

● Line 5 creates a sensor object. The argument is Wire which tells the
library to use the I2C interface. This is done to allow multiple I2C
buses to be used. Only one is used here.

● The timer variable in line 7 is used to track the time and have the
display updated sensor data once a second.

● Lines 9-14 is the setup function. The serial interface is configued
then the I2C interface. Next the sensor is configured with the
accelerometer set to 2G range and the gyro set to 500 degrees per
second rotation rate range.

● Line 13 calls a library function to calibrate the gyroscope. The
gyroscope has what is called a DC offset or constant offset. This is
an error that all sensors have and can be measured with the sensor
not moving. The library subtracts the offset from all measurements.

 6

The Code

● Lines 16 – 46 is the loop function.

● Line 19 determines if a second has passed. If so, the reset of the
code is executed.

● Line 17 is the function that collects the sensor data. The results are
kept in the library variables.

● Lines 22-40 display the sensor results Notice that the values
displayed are function calls. mpu6050.getTemp() will return the
temperatuer in Celcius. mpu6050.getAccx() will return the X-axis
accelerometer value in Gs and so on. Notice the values are in
floating point and processed from the raw values.

 7

The Code

● Lines 31 and 32 return the sensor angle in the X and Y axis based
on the accelerometer.

● mpu6050.getAccAngleX() returns an angle in degrees referenced
to the Z and X axis.

● mpu6050.getAccAngleY() returns the angle in degrees referenced
to the Z and Y axis.

● mpu6050.getGyroAngleX() returns the angle calculated by the
accumulation of the rate gyro around the X axis.

● mpu6050.getGyroAngleY() returns the angle calculated by the
accumulation of the rate gyro around the Y axis.

● mpu6050.getGyroAngleZ() returns the angle calculated by the
accumulation of the rate gyro around the Z axis.

 8

The Code

● mpu6050.getAngleX() provides the angle around the X axis based
on the combination of the accelerometer and gyro.

● mpu6050.getAngleY() provides the angle around the Y axis based
on the combination of the accelerometer and gyro.

● mpu6050.getangleZ() provides the angle around the Z axis based
on the combination of the accelerometer and gyro.

● These three functions provide the best orientation value of the
sensor and can be used to indicate the orientation of any device it is
connected.

 9

IMU Demonstration SLATE Code

● This program is a simpler version
of the example program where
only the X,Y,Z angles are sent
over the USB port.

● Enter this program in the Arduino
IDE and upload to the SLATE.

● The python program that plotted
the X,Y,Z values of the
accelerometer in the SYST101
lesson will be modified to plot the
angles from the MPU6050.

#include <MPU6050_tockn.h>
#include <Wire.h>

MPU6050 mpu6050(Wire);
long timer = 0;
char buf[64];

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

void loop() {
 mpu6050.update();
 Serial.print(mpu6050.getAngleX());
 Serial.print(“ “);
 Serial.print(mpu6050.getAngleY());
 Serial.print(“ “);
 Serial.println(mpu6050.getAngleZ());
 delay(10);
}

 10

Python Plotting Program

● The python code is a copy of the
code for plotting the
accelerometer data. Minor
changes to the code are shown
here.

● Line 9, the range is changed to
support +/- 180 degrees range.

● Line 16 needs to be set to the
COM port of the SLATE.

● Line 20 changes the plot title
text.

● Line 22 changes the Y axis label.

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('MPU6050')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()

 11

Python Plotting Program

● The rest of the code is not
changed.

● Refer to page 93 of the SYST 101
document for details of how the
program works.

24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8')
28 c = b.split(' ')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

 12

Testing

● Upload the Arduino Code to the SLATE. Check to see if the data is
properly being generated. All angles should be near zero if the board
is laying flat on a level table.

● Close the serial monitor window and run the python program.

● Rotate the board on the table and see how the Z-axis data changes.
Rotate more than 360 degrees. Notice the plot goes out of range.
Rotate in the opposite direction. The Z-axis plot should return back
into the plot area.

● Do the same for the other two axis. Notice they only go to +/- 180
degrees. The accelerometer is being used with the gyro to maintain
orientation information. The accelerometers are using gravity as a
reference to down. For the Z-axis, there is no reference. A
magnetometer could be used as a reference for the Z-axis using the
earth’s magnetic field.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

