

MPU6050

IMU Controlling Program

Introduction
● This lesson will demonstrate how to use the IMU to control a graphic cursor

in a program. The graphic cursor will be a ball.

● The angle of the MPU6050 will be used to control the cursor. To move the
cursor in the X direction, the Z-axis rotation of the sensor will be used. For
the Y direction, the Y-axis rotation will be used. To simulate a mouse click,
the rotation around the X-axis will be used.

● Control will be made wireless using WiFi.

Program Operation
● The code on the SLATE will sample the MPU6050 sensor and send the

angle data to the python program continuously. It is a simple loop.

● The python program will start up, open a 900x900 pixel window and start
receiving the MPU6050 angle data. The data will seem to be starting at
some random value. A calibration needs to be done. The user will point their
hand with the sensor toward the screen. The user will then press a key and
the program will take the sensor and use it as the center position of the
window. After that, the program will interpret the sensor data and calculate
the cursor position.

Arduino Program
● The program from the MPU6050 program

will be used again.

● Shown to the right is the initialization part of
the Arduino program.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include <MPU6050_tockn.h>
#include <Wire.h>

WiFiUDP client;
MPU6050 mpu6050(Wire);

long timer = 0;
char buf[64];

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
 WiFi.mode(WIFI_AP);
 WiFi.softAP("UDPIMU");
}

Arduino Program
● The loop() function also does not change.

● The X,Y and Z axis angles are sent to the python program.

void loop() {
 if(millis() - timer > 100) {
 mpu6050.update();
 timer = millis();
 snprintf(buf,64,"%f,%f,%f\n",mpu6050.getAngleX(),mpu6050.getAngleY(),mpu6050.getAngleZ())
 Serial.print(buf);
 client.beginPacket("192.168.4.2",3000); destination IP and port
 client.write(buf);
 client.endPacket();
 }
}

Python Program
● The highlighted code is used to

find the computers WiFi IP
address. This is needed so the
program knows where to listen for
UDP packets. A computer will
have at least one IP address and
it is always 127.0.0.1. This is used
for internal network
communications. The highlighted
code tries to contact the IP
address 8.8.8.8. This gets the
computer to use the WiFi and the
WiFi IP address becomes the
active network.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.connect(('8.8.8.8',80))
localip = s.getsockname()[0]
s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.bind((localip,3000))

px = 0
py = 0
first = 1
ix = 0
iy = 0
iz = 0
x = 0
y = 0
z = 0
range = 80 #motion range of 80 degrees

Python Program
● The next two lines restart the

network connection. s.bind() is
how the program is set up to listen
to the computers network port for
incoming UDP packets.

● The function socket.socket()
needs to be called again so
s.bind() will work.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.connect(('8.8.8.8',80))
localip = s.getsockname()[0]
s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.bind((localip,3000))

px = 0
py = 0
first = 1
ix = 0
iy = 0
iz = 0
x = 0
y = 0
z = 0
range = 80 #motion range of 80 degrees

Python Program
● Variables px and py are created and

set to zero. These variables will be
the cursor position in the window.

● Variables ix,iy,iz will be the calibration
variables. The variables will be set
when a key is pressed.

● Variables x,y,z will be used to hold the
angle data. They need to be declared
and set here so they can be used in
all parts of the code.

● range specifies the sensor angle to
the screen width.

● All these variables are global.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.connect(('8.8.8.8',80))
localip = s.getsockname()[0]
s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.bind((localip,3000))

px = 0
py = 0
first = 1
ix = 0
iy = 0
iz = 0
x = 0
y = 0
z = 0
range = 80 #motion range of 80 degrees

Python Program
● This part of the code initializes and

opens the window.

● In the while loop, all events are
processed. If the close button on
the window is clicked, the program
will quit. If a key is pressed on the
keyboard, the calibration variables
will be loaded with the current
sensor data.

pygame.init()
scn = pygame.display.set_mode((900,900))

while 1:
 for event in pygame.event.get():
 if event.type == pygame.QUIT:
 pygame.quit()
 quit()
 if event.type == pygame.KEYDOWN:
 ix = x
 iy = y
 iz = z

Python Program
● s.recvfrom() waits and

receives the UDP
packet. Variable a will
hold the packet content
and variable b will
contain the IP address of
who sent the UDP
packet.

● The data packet
received is in a byte text
format. c.decode()
converts the byte text to
a String type value
which is unicode.

 a,b = s.recvfrom(256)
 c = a.decode('utf-8')
 d = c.split(',')
 if len(d) == 3:
 x = float(d[0])
 y = float(d[1])
 z = float(d[2])
 if first == 1:
 ix = x
 iy = y
 iz = z
 first =0
 print(x,y,z)
 px = 900/range * (iz – z) + 450
 py = 900/range * (iy – y) + 450

 scn.fill((0,0,0))
 pygame.draw.circle(scn,(200,0,0),(int(px),int(py)),20)
 pygame.display.update()

Python Program
● Since the data is sent as

text with a coma
separating each value,
the c.split() function
separates the three
values in the string and
stores them in variable d
which becomes a list
type variable.

● The values are
converted from String to
floating point values and
printed to the python
IDLE console window.

 a,b = s.recvfrom(256)
 c = a.decode('utf-8')
 d = c.split(',')
 if len(d) == 3:
 x = float(d[0])
 y = float(d[1])
 z = float(d[2])
 print(x,y,z)
 px = 900/range * (iz – z) + 450
 py = 900/range * (iy – y) + 450

 scn.fill((0,0,0))
 pygame.draw.circle(scn,(200,0,0),(int(px),int(py)),20)
 pygame.display.update()

Python Program
● The range of the

movement and center
position needs to be
mapped to the window
coordinates. A line slope
equation is used.

● The slope is the range of
the pixels over the range
of the input. The center of
the screen added to the
equation since that is the
intercept point.

 a,b = s.recvfrom(256)
 c = a.decode('utf-8')
 d = c.split(',')
 if len(d) == 3:
 x = float(d[0])
 y = float(d[1])
 z = float(d[2])
 print(x,y,z)
 px = 900/range * (iz – z) + 450
 py = 900/range * (iy – y) + 450

 scn.fill((0,0,0))
 pygame.draw.circle(scn,(200,0,0),(int(px),int(py)),20)
 pygame.display.update()

Python Program
● The last part of the

program updates the
display. The x-axis
movement is flipped
using the 900 – px.

● The circle function
requires integers only
which is why the int()
function is included.

 a,b = s.recvfrom(256)
 c = a.decode('utf-8')
 d = c.split(',')
 if len(d) == 3:
 x = float(d[0])
 y = float(d[1])
 z = float(d[2])
 print(x,y,z)
 px = 900/range * (iz – z) + 450
 py = 900/range * (iy – y) + 450

 scn.fill((0,0,0))
 pygame.draw.circle(scn,(200,0,0),(int(px),int(py)),20)
 pygame.display.update()

Testing
● Load the SLATE code.

● Connect the computer to the SLATE WiFi SSID.

● Run the python program.

● Point the sensor toward the screen and press a key.

● The circle should appear in the center of the screen and as the sensor is
tilted, the circle should move around the screen.

Detecting a Click
● Up to this point, the Y and Z axis of the MPU6050 are used for positioning

the circle cursor in the python program window.

● The x axis could be used to detect a click. Detecting the rotation of the
sensor could be used to detect a click. Rotate counter clockwise for a left
click and clockwise for a right click.

● The SLATE program does not change.

Click Detection
● One more variable

needs to be added to
the python program.

● Variable rotate will be
used to detect the
rotation of the sensor.

● Variable threshold is set
to 20 degrees.

import socket
import pygame

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.connect(('8.8.8.8',80))
localip = s.getsockname()[0]
s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
s.bind((localip,3000))

px = 0
py = 0
first = 1
ix = 0
iy = 0
iz = 0
x = 0
y = 0
z = 0
range = 80 # motion range of 80 degrees
rotate = 0
threshold = 20

Click Detection
● In the section of code

where the cursor position
is calculated, the click
detection code is added.

● First the initial position is
subtracted from the
current sensor value to
remove any offset.

● Then the resulting value
is compared with the
threshold to determine
left or right clicks. The left
click is a negative angle.

 a,b = s.recvfrom(256)
 c = a.decode('utf-8')
 d = c.split(',')
 if len(d) == 3:
 x = float(d[0])
 y = float(d[1])
 z = float(d[2])
 print(x,y,z)
 px = 900/range * (iz – z) + 450
 py = 900/range * (iy – y) + 450
 rotate = ix – x
 if rotate < -threshold:
 print(“Left click detected”)
 if rotate > threshold:
 print(“Right click detected”)

 scn.fill((0,0,0))
 pygame.draw.circle(scn,(200,0,0),(int(px),int(py)),20)
 pygame.display.update()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

