
Networking

Intro to Internet of Things

2

Introduction
● Internet of Things also known as IoT

is a term used for connecting any
type of device to the internet to be
controlled and/or monitored such as
appliances, lighting, locks, etc.

● WiFi routers are everywhere and in
many homes. This lesson will
explain how multiple SLATEs can be
connected to a WiFi router and how
to access them through another
computer.

WiFi RouterWiFi Router

Station
SLATE

Station
SLATE

Station
SLATE

Station
SLATE

Station
SLATE

Station
SLATE

LaptopLaptop

https://www.networkworld.com/article/3207535/what-is-iot-the-internet-of-things-explained.html

3

Introduction
● WiFi routers give computers and devices an IP address when the devices

connect to the router. The router runs a DHCP server program. DHCP is
Dynamic Host Configuration Protocol. It is configured with a range of IP
addresses it can send to devices that connect and request an IP address.

● Many WiFi routers are configured by default with an address range of
192.168.0.100 to 192.168.0.254 or 192.168.1.100 to 192.168.1.254. This
leaves the addresses below 100 to be used as static IP addresses where
the device can be manually configured with an IP address.

4

Connecting to Router
● This code shows how to connect to the WiFi

router.

● The SLATE WiFi is configured to Station
mode which means it connects to an access
point which is the WiFi router.

● You need to insert the SSID and passphrase
into the code in order to connect.

● The code will attempt to connect and display
the IP address received.

● Try it out and see what IP address is received.
Before compiling and uploading, open the
serial monitor window. This way, you will see
the IP address since it is displayed once.

#include <ESP8266WiFi.h>

const char* ssid = "serveSLATE";
const char* pass = “passphrase”;

void setup() {
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid,pass);
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println(WiFi.localIP());
}

void loop() {
}

5

Creating a Web Server
● The client and server will use HTTP which is Hyper Text Transfer Protocol.

● HTTP is stateless. The client has to connect for each data transfer and then disconnect.

● The client sends a request to the server and the server responds.

● There are two request methods, GET and POST. GET will be used here.

● GET requests data from a specified resource. It is the simpler method of communicating with
the server.

● Web browsers require a URL to identify a website. It is the website name or address.

● A GET request can be typed into the web browser URL location. Example:

● 192.168.x.x/LED1ON (insert SLATE IP address)

● The /LED1ON identifies a resource in the web server such as a directory or file.

● This web server will use it to execute a function.

6

Simple Web Server
● The web server will listen for a client

to connect and send a request. If the
server receives:

● 192.168.4.1/LED1ON

● The server will call function
handle1on().

● Other commands shown to the right
will call the functions specified.

● The connection between the requests
and the functions are configured in the
setup() function.

handle1on()

Web Server
Request

Processing

handle1off()

handle2on()

handle2off()

get_analog()

/LED1ON

/LED1OFF

/LED2ON

/LED2OFF

/ANALOG

7

Simple Webserver
● Connect the RED LED to digital pin 14.

● Connect the GREEN LED to digital pin 15.

● The webserver will control the LEDs.

8

Simple Webserver
● The include file is a bit different. This one

provides functions to support http packet
processing.

● A web server object is created in the
second line.

● Next are the functions that execute the
commands received. Each operation is a
separate function. The first four are turning
LEDs on and off. The last one gets the
ADC value and sends it back to the client.

● Each function sends a response indicating
its operation.

● This is is the first part of the SLATE code.

#include <ESP8266WebServer.h>

ESP8266WebServer server(80);

void handle1on() {
 digitalWrite(14,HIGH);
 server.send(200,”text/plain”,”LED 1 ON\n”);
}

void handle1off() {
 digitalWrite(14,LOW);
 server.send(200,”text/plain”,”LED 1 OFF\n”);
}

void handle2on() {
 digitalWrite(15,HIGH);
 server.send(200,”text/plain”,”LED 2 ON\n”);
}

void handle2off() {
 digitalWrite(15,LOW);
 server.send(200,”text/plain”,”LED 2 OFF\n”);
}

void get_analog() {
 int a = analogRead(0);
 String b = String(“Result: “) + String(a) + “\n”;
 server.send(200,”text/plain”,b);
}

9

Simple Webserver
● The setup function sets up the web server and

how all the functions will be called.

● First, the serial interface is configured.

● Next, the WiFi is set to be a station using the
WiFi.mode() function.

● The SSID is set with the Wifi.begin() function.

● The next 5 lines set up the webserver. Each
request is assigned a function.

● The server is then started and the digital pins
are configured.

● In the loop function, the function
server.handleClient() is repeatedly called to
handle clients that connect.

void setup() {
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid,pass);
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println(WiFi.localIP());
 server.on("/LED1ON",handle1on);
 server.on("/LED1OFF",handle1off);
 server.on("/LED2ON",handle2on);
 server.on("/LED2OFF",handle2off);
 server.on("/ANALOG",get_analog);
 server.begin();
 pinMode(15,OUTPUT);
 pinMode(14,OUTPUT);
}

void loop() {
 server.handleClient();
}

10

Simple Webserver
● Open the serial monitor and run the SLATE code. You will need to open the serial monitor before compiling

and uploading since the IP address is shown only once.

● Note the IP address the SLATE displays. That is needed below.

● A web browser is required to test out the web server. Connect the laptop WiFi to the WiFi router.

● Open a web browser.

● In the URL, enter 192.168.x.x/LED1ON where x.x is the last part of the IP address the SLATE displayed.

● This should turn the LED on.

● Now enter 192.168.x.x/LED1OFF

● The LED should turn off.

● Try 192.168.x.x/ANALOG , the ADC value should be returned.

● There should be a response in the web browser for each command.

● You can always expand the response and add html code.

11

Auto-Refreshing Webpage
● You can make the web page automatically update. It requires a little bit of html code

added to the string sent to the web browser. Go to the get_analog() function and add
the highlighted line.

● The html code is added to the front of the measurement string and </html> is added
to the end.

● The content=2 sets the refresh rate of the page. It can be changed to any integer
value.

● Notice \”. You cannot have a quote inside a string which is requires quotes to identify
the string. the backlash is an escape sequence that tells the compiler the next
character is not to be interpreted as part of the language.

void get_analog()
{
 int a = analogRead(0);
 String b = String("Temperature: ") + String(a) + "\n";
 b = “<html><head><meta http-equiv=\”refresh\” content=\”2\”>” + b + “</html>”;
 server.send(200,"text/html",b);
}

12

IoT
● This simple webserver shows the basics of the Internet of Things. You can

have multiple SLATES, each with their own IP address and use a web
browser to control each one.

13

Better Web Server
● In this section, we will use the file system to contain a web page and set up

the web server to use the file instead of having a String variable contain the
html code.

● Review the File System lesson on how to set up to use part of the SLATE
memory for file storage using the SPIFF library.

● Create a new program and name it staticweb.

● In the staticweb directory, create a directory called data.

● The directory data will hold the html file.

14

Static Web Pages
● You need to configure the processor to support a file system.

● Go into the Tools menu and select Flash Size

● If your processor is blue, select 1M (512K SPIFFS). This will allocate 512
Kbytes for storing html and associated files.

● If your processor is black, select 4M (3M SPIFFS). This will allocate 3 MB for
storing html and associated files.

15

Static Web Pages
● With a text editor, create the file to the

right and save it as index.html.

● This will create a web page with a
sentence in bold.

● Select ESP8266 Sketch Data
Upload in the Tools menu. This will
create a file system image and
upload it to the SLATE processor.
This will take a while depending on
how large of a file system was
selected.

<html><title>Simple HTML</title><body>
<h1>This is a simple page</h1>
</body></html>

A nice and popular text editor is called
note++ for Windows and Mac. It can be
found at https://notepad-plus-plus.org/

For Mac OSX:
https://www.sublimetext.com/

https://notepad-plus-plus.org/

16

Static Web Pages
● Next is to create the web server. It will

be mostly the same as before but not
require a function to generate the web
page.

● Besides starting the file system, the
significant difference is the
server.serveStatic() function. This
replaces the server.on() function. The
new function will automatically send
the index.html file to the web browser
when a browser connects.

● Upload the code and connect with the
web browser by typing the URL http://
192.168.x.x/

#include <ESP8266WebServer.h>
#include <LittleFS.h>

ESP8266WebServer server(80);

void setup() {
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid,pass);
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println(WiFi.localIP());
 LittleFS.begin();
 server.serveStatic(“/”,LittleFS,”index.html”);
 server.begin();
}

void loop() {
 server.handleClient();
}

17

Static Web Page
● Multiple web pages can be included.

Each web page needs to be linked using
the server.serveStatic() function.

● The code to the right shows the second
page added to the web server. A file
page2.html needs to be added to the
data directory.

● Copy the index.html to page2.html.
Modify the text so it is different from
index.html.

● Select ESP8266 Sketch Data Upload in
the Tools menu to upload the new page.

● In the browser, go to 192.168.x.x/page2.

● The second page should come up.

#include <ESP8266WebServer.h>
#include <LittleFS.h>

ESP8266WebServer server(80);

void setup() {
 Serial.begin(115200);
 WiFi.mode(WIFI_STA);
 WiFi.begin(ssid,pass);
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println(WiFi.localIP());
 LittleFS.begin();
 server.serveStatic(“/”,SPIFFS,”index.html”);
 server.serveStatic(“/page2”,LittleFS,”page2.html”);
 server.begin();
}

void loop() {
 server.handleClient();
}

18

Generic Web Server
● This code will let you have as many

web pages and images as can fit in the
file system. The trick is to use the
function server.onNotFound(). This
function is called when no other
server.on() functions detect a file. It is
normally used to send an error
message to the web browser.

● Don’t forget to replace ssid and pass
with your WiFi router information.

#include <ESP8266WebServer.h>
#include <LittleFS.h>

ESP8266WebServer server(80);

void setup() {
 WiFi.mode(WIFI_STA);
 WiFi.begin(“ssid”,”pass”);
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println(WiFi.localIP());
 LittleFS.begin();
 server.onNotFound(handleOther);
 server.begin();
}

void loop() {
 server.handleClient();
}

19

Generic Web Server
● server.onNotFound() calls

the function handleOther().

● handleOther() looks at the
URL information received
from the browser and
determines what file to send.

● server.uri() gets the path of
what is requested. The path
is printed to the serial
monitor. The function
path.c_str() converts path
to a printable string.

void handleOther()
{
 String path = server.uri();
 Serial.println(path.c_str());
 String dataType = "text/plain";
 if(path.endsWith("/")) path = "index.html";
 if(path.endsWith(".jpg")) dataType = "image/jpeg";
 else if(path.endsWith(".png")) dataType = "image/png";
 else if(path.endsWith(".html")) dataType = "text/html";
 else {
 server.send(404,dataType,"Error");
 return;
 }
 File datafile = LittleFS.open(path.c_str(),"r");
 if(!datafile) {
 server.send(404,"text/plain","file not found");
 return;
 }
 server.streamFile(datafile,dataType);
 datafile.close();
}

20

Generic Web Server
● Variable dataType is set to

“text/plain”. This is required
by the web browser to indicate
the type of information being
received. Each file type has a
unique data type.

● The first check is to determine
if the main page is to be
accessed. This is usually
indicated by /. If it is, then the
path variable is set to
/index.html. This will cause
the function to send the
index.html page to the web
browser.

void handleOther()
{
 String path = server.uri();
 Serial.println(path.c_str());
 String dataType = "text/plain";
 if(path.endsWith("/")) path = "index.html";
 if(path.endsWith(".jpg")) dataType = "image/jpeg";
 else if(path.endsWith(".png")) dataType = "image/png";
 else if(path.endsWith(".html")) dataType = "text/html";
 else {
 server.send(404,dataType,"Error");
 return;
 }
 File datafile = LittleFS.open(path.c_str(),"r");
 if(!datafile) {
 server.send(404,"text/plain","file not found");
 return;
 }
 server.streamFile(datafile,dataType);
 datafile.close();
}

21

Generic Web Server
● Next, file types are checked.

path.endsWith() will check
if the argument matches the
end of the string variable
value. dataType is set to the
type of file being accessed.

● If none of the file types are
recognized, an error
message is sent to the
browser and the function
exits.

void handleOther()
{
 String path = server.uri();
 Serial.println(path.c_str());
 String dataType = "text/plain";
 if(path.endsWith("/")) path = "index.html";
 if(path.endsWith(".jpg")) dataType = "image/jpeg";
 else if(path.endsWith(".png")) dataType = "image/png";
 else if(path.endsWith(".html")) dataType = "text/html";
 else {
 server.send(404,dataType,"Error");
 return;
 }
 File datafile = LittleFS.open(path.c_str(),"r");
 if(!datafile) {
 server.send(404,"text/plain","file not found");
 return;
 }
 server.streamFile(datafile,dataType);
 datafile.close();
}

22

Generic Web Server
● If there was no error, the

requested data file is
opened. if(!datafile) checks
to see if the file exists. If not,
an error message is sent.
Notice in the second error
message, the data type is
spelled out. This is because
dataType could have been
changed to something else
and the error message is
plain text.

void handleOther()
{
 String path = server.uri();
 Serial.println(path.c_str());
 String dataType = "text/plain";
 if(path.endsWith("/")) path = "index.html";
 if(path.endsWith(".jpg")) dataType = "image/jpeg";
 else if(path.endsWith(".png")) dataType = "image/png";
 else if(path.endsWith(".html")) dataType = "text/html";
 else {
 server.send(404,dataType,"Error");
 return;
 }
 File datafile = LittleFS.open(path.c_str(),"r");
 if(!datafile) {
 server.send(404,"text/plain","file not found");
 return;
 }
 server.streamFile(datafile,dataType);
 datafile.close();
}

23

Generic Web Server
● Finally, if there were no errors,

the selected file is sent and the
file is then closed.

● This program will let you create
a web server with multiple web
pages and multiple images
embedded in the web pages.

● Just remember all the web
pages and images must fit within
the file system space. Any
image or file update requires the
Sketch Data Upload. If all the
files exceed the size of the file
system, the upload will let you
know.

void handleOther()
{
 String path = server.uri();
 Serial.println(path.c_str());
 String dataType = "text/plain";
 if(path.endsWith("/")) path = "index.html";
 if(path.endsWith(".jpg")) dataType = "image/jpeg";
 else if(path.endsWith(".png")) dataType = "image/png";
 else if(path.endsWith(".html")) dataType = "text/html";
 else {
 server.send(404,dataType,"Error");
 return;
 }
 File datafile = LittleFS.open(path.c_str(),"r");
 if(!datafile) {
 server.send(404,"text/plain","file not found");
 return;
 }
 server.streamFile(datafile,dataType);
 datafile.close();
}

24

Learn HTML
● If you want to learn how to create web pages with html, do a search for learn

 html. Videos will come up.

● Other possible sites:

– https://www.codeacademy.com/learn/learn-html

– https://www.w3schools.com/Html

https://www.codeacademy.com/learn/learn-html
https://www.w3schools.com/Html

25

Expanding Generic Server
● You can expand the web server by

combining the simple web server
shown at the start with the generic
web server.

● You can add server.on() functions to
call specific functions. The only
requirement is that the server.on()
function be inserted above
server.onNotFound().

● Complete the addition of the funtions
from the first web server lesson to
the generic server.

#include <ESP8266WebServer.h>
#include <LittleFS.h>

ESP8266WebServer server(80);

void setup() {
 WiFi.mode(WIFI_STA);
 WiFi.begin(“ssid”,”pass”);
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 Serial.println(WiFi.localIP());
 LittleFS.begin();
 server.on("/LED1ON",handle1on);
 server.on("/LED1OFF",handle1off);
 server.onNotFound(handleOther);
 server.begin();
}

void loop() {
 server.handleClient();
}

26

End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

