
1 MQTT

Message Queuing Telemetry Transport

2 MQTT

● MQTT is a service that allows
devices and systems to send and
receive data.

● Data is passed using a publish
and subscription model. Devices
can send data by publishing to
topics.

● Devices can subscribe to topics
and receive any data published to
that topic.

MQTT
Server

MQTT
Server

DeviceDevice

DeviceDevice

ComputerComputer

P
ublish

P
ub

lis
h

Subsc
rib

e

S
ub

sc
rib

e

https://randomnerdtutorials.com/what-is-mqtt-and-how-it-works/

3 MQTT

● Passing data between devices are
through topics. There can be
many different topics. To receive
data, a device subscribes to a
topic.

● To control a device through MQTT
another device or computer
publishes data through the same
topic.

MQTT
Server

MQTT
Server

DeviceDevice

DeviceDevice

ComputerComputer

P
ublish

P
ub

lis
h

Subsc
rib

e

S
ub

sc
rib

e

4 MQTT

● Any number of devices can
subscribe or publish to the same
topic. If several devices subscribe
to the same topic, any data
published to that topic will be sent
to all the devices.

MQTT
Server

MQTT
Server

DeviceDevice

DeviceDevice

ComputerComputer

P
ublish

P
ub

lis
h

Subsc
rib

e

S
ub

sc
rib

e

5 MQTT Example

● In this example, the SLATE will be
set up to subscribe to the topic
LED. The data sent to the topic
will indicate which LED to turn on
or off.

● A python program will be used to
turn the LEDs on and off.

● The message or data to be sent
from the python program will be
two text characters. The first turns
the red LED on and off by using 1
and 0. The second character
controls the green LED.

MQTT
Server

MQTT
Server

Python
Program

Python
Program

SLATESLATE Subscribe

P
ublish

LEDLED LEDLED

6 MQTT 2

● The mqtt service resides on a
computer at cansat.info. A user
name and password is required.

● The user name is gmu2021

● The password is rockets41!

MQTT
Server

cansat.info

MQTT
Server

cansat.info

DeviceDevice

DeviceDevice

ComputerComputer

S
ubscribe

P
ub

lis
h

Publis
h

7 PubSubClient for the SLATE

● An mqtt library is needed for the SLATE. The PubSubClient library works
well.

● On the Arduino IDE, select the Sketch menu and the Include Library
submenu. Select Manage Libraries.

● A window pops open with a list of available libraries. Enter pubsubclient in
the top right search filter text entry.

● Scroll, locate and install PubSubClient.

8 MQTT Client for Python

● Python will need the Paho-mqtt client module.

● Open a terminal or Power shell. Enter the following:

pip3 install paho-mqtt

● The module should get installed.

9 SLATE MQTT Subscribe

● The SLATE will subscribe and turn LEDs on and off.

● Connect the red LED to digital pin 13.

● Connect the green LED to digital pin 15.

10 SLATE MQTT Subscribe

● The code will connect to the mqtt
server and then subscribe to topic LED.

● First, the include files are placed at the
top of the program.

● The WiFi client is declared as esp.

● The mqtt client is defined as client and
attached to the WiFi client. This makes
all the mqtt communications through
the WiFi.

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

WiFiClient esp;
PubSubClient client(esp);

void setup() {
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(15,OUTPUT);
 WiFi.mode(WIFI_STA);
 WiFi.begin("SSID","PASSWORD");
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 randomSeed(micros());
 String clientID = “me” + String(random(0xffff));
 Serial.println();
 Serial.println(WiFi.localIP());
 client.setServer("cansat.info",1883);
 client.setCallback(callback);
 if(client.connect(clientID.c_str(),”gmu2021”,rockets41!)) {

Serial.println(“Connected”);
 }
 client.subscribe("gmu/LED");
}

11 SLATE MQTT Subscribe

● In the setup() function, the digital pins
13 and 15 are configured as ouputs.

● The SLATE attempts to connect to the
WiFi network.

● Replace SSID with your own SSID.

● Replace PASSWORD with the WiFi
router password.

● The SLATE will check if it connects
every 500 ms.

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

WiFiClient esp;
PubSubClient client(esp);

void setup() {
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(15,OUTPUT);
 WiFi.mode(WIFI_STA);
 WiFi.begin("SSID","PASSWORD");
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 randomSeed(micros());
 String clientID = “me” + String(random(0xffff));
 Serial.println();
 Serial.println(WiFi.localIP());
 client.setServer("cansat.info",1883);
 client.setCallback(callback);
 if(client.connect(clientID.c_str(),”gmu2021”,rockets41!)) {

Serial.println(“Connected”);
 }
 client.subscribe("gmu/LED");
}

12 SLATE MQTT Subscribe
● Next, a random seed is generated for

the random number generator.

● A clientID is created for connecting to
the mqtt server. Each connection
needs a unique client ID. Using a
random number generator to create a
unique client ID works well.

● If a client connects with the same ID,
the previous client will get
disconnected.

● In the function setserver(), replace
laptopIP with the IP address recorded.

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

WiFiClient esp;
PubSubClient client(esp);

void setup() {
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(15,OUTPUT);
 WiFi.mode(WIFI_STA);
 WiFi.begin("SSID","PASSWORD");
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 randomSeed(micros());
 String clientID = “me” + String(random(0xffff));
 Serial.println();
 Serial.println(WiFi.localIP());
 client.setServer("cansat.info",1883);
 client.setCallback(callback);
 if(client.connect(clientID.c_str(),”gmu2021”,rockets41!)) {

Serial.println(“Connected”);
 }
 client.subscribe("gmu/LED");
}

13 SLATE MQTT Subscribe

● A callback function is set up with
the setCallback() function. Any
time a message is received through
the subscribed topic, the callback
function will be called.

● Next, the connection is made using
the client ID. The .c_str() attached
to clientID is used to convert the
string variable to a byte array for
the function.

● After connecting, the subscribe()
function subscribes to gmu/LED.

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

WiFiClient esp;
PubSubClient client(esp);

void setup() {
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(15,OUTPUT);
 WiFi.mode(WIFI_STA);
 WiFi.begin("SSID","PASSWORD");
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 randomSeed(micros());
 String clientID = “me” + String(random(0xffff));
 Serial.println();
 Serial.println(WiFi.localIP());
 client.setServer("cansat.info",1883);
 client.setServer("cansat.info",1883);
 client.setCallback(callback);
 if(client.connect(clientID.c_str(),”gmu2021”,rockets41!)) {

Serial.println(“Connected”);
 }
 client.subscribe("gmu/LED");
}

14 SLATE MQTT Subscribe

● The callback function has three
arguments.

● The first argument points to the
topic for the message received.

● The second argument is the data
being passed.

● The third argument specifies the
length of the data or number of
bytes.

void callback(char *topic,byte* payload, uint16_t length) {
 if(!strcmp(topic,"gmu/LED")) {
 if(payload[0] == '1') digitalWrite(13,HIGH);
 else if(payload[0] == '0') digitalWrite(13,LOW);
 if(payload[1] == '1') digitalWrite(15,HIGH);
 else if(payload[1] == '0') digitalWrite(15,LOW);
 }
}

void loop()
{
 client.loop();
}

15 SLATE MQTT Subscribe

● The first thing done is to determine if the
data is from the topic gmu/LED. It is
possible to subscribe to more than one
topic. The same callback function is
called for any subscribed topic.

● If more than one topic is subscribed, the
topic has to be determined in the callback
function.

● The strcmp() function will return zero if
there is a match between topic and the
text in quotes. This is why the
exclamation point is used in front of
strcmp().

void callback(char *topic,byte* payload, uint16_t length) {
 if(!strcmp(topic,"gmu/LED")) {
 if(payload[0] == '1') digitalWrite(13,HIGH);
 else if(payload[0] == '0') digitalWrite(13,LOW);
 if(payload[1] == '1') digitalWrite(15,HIGH);
 else if(payload[1] == '0') digitalWrite(15,LOW);
 }
}

void loop()
{
 client.loop();
}

16 SLATE MQTT Subscribe

● The payload will consist of two text
characters that are either 1 or 0.

● The first character turns the red LED on
and off and the second character turns
the green LED on and off.

● In the loop() function, the client.loop()
is called repeatedly. This is what checks
for any data received through the
subscribed topics.

void callback(char *topic,byte* payload, uint16_t length) {
 if(!strcmp(topic,"gmu/LED")) {
 if(payload[0] == '1') digitalWrite(13,HIGH);
 else if(payload[0] == '0') digitalWrite(13,LOW);
 if(payload[1] == '1') digitalWrite(15,HIGH);
 else if(payload[1] == '0') digitalWrite(15,LOW);
 }
}

void loop()
{
 client.loop();
}

17 Python Publishing Program

● The python program will create a GUI with buttons to turn the LEDs on and
off.

18 Python Publishing Program

● At the top of the program, import
the tkinter module and the mqtt
client module.

● Next, create an instance of the
client called mqttc.

● mqttc.connect(), connects to the
mqtt server. cansat.info runs the
server.

● 1883 is the default port number for
the mqtt server.

from tkinter import *
import paho.mqtt.client as mqtt

mqttc = mqtt.Client()
mqttc = username_pw_set(‘gmu2021’,’rockets41!’)
mqttc.connect("cansat.info",1883)

redled = "0"
greenled = "0"

def redon():
 global redled,greenled
 print("Red ON")
 redled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def redoff():
 global redled,greenled
 print("Red OFF")
 redled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

19 Python Publishing Program

● Next, two global variables are
created to hold the state of the
LEDs. One is for the red LED
and the other for the green
LED.

● The first function is for turning
the red LED on. This function
is called by the button that will
be created to turn on the LED.

from tkinter import *
import paho.mqtt.client as mqtt

mqttc = mqtt.Client()
mqttc = username_pw_set(‘gmu2021’,’rockets41!’)
mqttc.connect("cansat.info",1883)

redled = "0"
greenled = "0"

def redon():
 global redled,greenled
 print("Red ON")
 redled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def redoff():
 global redled,greenled
 print("Red OFF")
 redled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

20 Python Publishing Program

● In the function, the redled and greenled
variables are declared as globals. If this
is not done, the function will declare
them as local variables and not use the
variables declared above.

● The redled variable is set to text value
1.

● The variable msg is created and
combines redled and greenled together.

● mqttc.publish() sends the contents of
msg to the topic LED on the mqtt server.

from tkinter import *
import paho.mqtt.client as mqtt

mqttc = mqtt.Client()
mqttc = username_pw_set(‘gmu2021’,’rockets41!’)
mqttc.connect("cansat.info",1883)

redled = "0"
greenled = "0"

def redon():
 global redled,greenled
 print("Red ON")
 redled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def redoff():
 global redled,greenled
 print("Red OFF")
 redled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

21 Python Publishing Program

● The redoff() function is identical to the
redon() with the exception that redled
is set to text value 0.

from tkinter import *
import paho.mqtt.client as mqtt

mqttc = mqtt.Client()
mqttc = username_pw_set(‘gmu2021’,’rockets41!’)
mqttc.connect("cansat.info",1883)

redled = "0"
greenled = "0"

def redon():
 global redled,greenled
 print("Red ON")
 redled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def redoff():
 global redled,greenled
 print("Red OFF")
 redled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

22 Python Publishing Program

● The functions for controlling
the green LED are the same
as the previous two functions
with the exception of
modifying the greenled
variable.

def greenon():
 global redled,greenled
 print("Green ON")
 greenled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def greenoff():
 global redled,greenled
 print("Green OFF")
 greenled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

rb1 = Button(text="RED ON",command=redon, width=20)
rb2 = Button(text="RED OFF",command=redoff,width=20)
gb1 = Button(text="GREEN ON",command=greenon,width=20)
gb2 = Button(text="GREEN OFF",command=greenoff,width=20)
rb1.pack()
rb2.pack()
gb1.pack()
gb2.pack()
mainloop()

23 Python Publishing Program

● This section of the code
creates four buttons. Each
button is associated with a
specific function.

● The width=20 parameter
sets the width of the button
fixed to 20 characters wide.

def greenon():
 global redled,greenled
 print("Green ON")
 greenled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def greenoff():
 global redled,greenled
 print("Green OFF")
 greenled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

rb1 = Button(text="RED ON",command=redon, width=20)
rb2 = Button(text="RED OFF",command=redoff,width=20)
gb1 = Button(text="GREEN ON",command=greenon,width=20)
gb2 = Button(text="GREEN OFF",command=greenoff,width=20)
rb1.pack()
rb2.pack()
gb1.pack()
gb2.pack()
mainloop()

24 Python Publishing Program

● At the bottom of the program,
the buttons are packed into a
vertical stack.

● mainloop() starts the loop
where the buttons are
monitored and the associated
functions are called.

def greenon():
 global redled,greenled
 print("Green ON")
 greenled = "1"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

def greenoff():
 global redled,greenled
 print("Green OFF")
 greenled = "0"
 msg = redled + greenled
 mqttc.publish("gmu/LED",msg)

rb1 = Button(text="RED ON",command=redon, width=20)
rb2 = Button(text="RED OFF",command=redoff,width=20)
gb1 = Button(text="GREEN ON",command=greenon,width=20)
gb2 = Button(text="GREEN OFF",command=greenoff,width=20)
rb1.pack()
rb2.pack()
gb1.pack()
gb2.pack()
mainloop()

25 Starting it Up

● With the MQTT server running, load the SLATE program and let it start.

● Start the python program.

● A window should open with four buttons.

● Try turning the LEDs on and off.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

