
MQTT 2

Using a Cloud Service

2

MQTT 2

● In this lesson, all the classes
SLATEs will publish sensor data to
an mqtt service and run a python
program to collect data from all
the sensors.

● The thermistor will be used to
measure temperature. Each
student will set up their slate to
measure temperature and publish
it once a minute for about 24
hours.

MQTT
Server

cansat.info

MQTT
Server

cansat.info

DeviceDevice

DeviceDevice

ComputerComputer

S
ubscribe

P
ub

lis
h

Publis
h

3

MQTT 2

● Each student shall send their data
to the topic gmu/temperature.

● The format of the data shall be
– last name,temperature

● Each student shall also run a
python program to subscribe to
the same topic and collect all data
published. The data can then be
sorted by name and plotted over
time.

MQTT
Server

cansat.info

MQTT
Server

cansat.info

DeviceDevice

DeviceDevice

ComputerComputer

S
ubscribe

P
ub

lis
h

Publis
h

4

MQTT 2

● The mqtt service resides on a
computer at cansat.info. A user
name and password is required.

● The user name is gmu2021

● The password is rockets41!

MQTT
Server

cansat.info

MQTT
Server

cansat.info

DeviceDevice

DeviceDevice

ComputerComputer

S
ubscribe

P
ub

lis
h

Publis
h

5

MQTT SLATE Code

● This program will publish data to
the mqtt server. The SLATE
setup() function is similar to the
previous program.

● Variable ttag is declared as an
unsigned 32-bit integer. This will
be used to determine the timing
to publish the data.

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

WiFiClient esp;
PubSubClient client(esp);

uint32_t ttag;

void setup() {
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(15,OUTPUT);
 WiFi.mode(WIFI_STA);
 WiFi.begin("SSID","PASSWORD");
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 randomSeed(micros());
 String clientID = “me” + String(random(0xffff));
 Serial.println();
 Serial.println(WiFi.localIP());
 client.setServer("cansat.info",1883);
 if(client.connect(clientID.c_str(),”gmu2021”,”rockets41!”)) {

Serial.println(“Connected”);
 }
}

6

MQTT SLATE Code

● Instead of connecting to the laptop
mqtt server, a cloud service will be
used called cansat.info.

● Next, the connection has two
parameters added, the user name
and password.

● The subscribe() function is not
used in this program since it will
only publish sensor data.

#include <ESP8266WiFi.h>
#include <PubSubClient.h>

WiFiClient esp;
PubSubClient client(esp);

uint32_t ttag;

void setup() {
 Serial.begin(115200);
 pinMode(13,OUTPUT);
 pinMode(15,OUTPUT);
 WiFi.mode(WIFI_STA);
 WiFi.begin("SSID","PASSWORD");
 while(WiFi.status() != WL_CONNECTED) {
 Serial.print(".");
 delay(500);
 }
 randomSeed(micros());
 String clientID = “me” + String(random(0xffff));
 Serial.println();
 Serial.println(WiFi.localIP());
 client.setServer("cansat.info",1883);

if(client.connect(clientID.c_str(),”gmu2021”,”rockets41!”))
{

Serial.println(“Connected”);
 }
}

7

MQTT SLATE Code

● In the loop function, the
client.loop() function is called
to service the mqtt operations.

● Time is checked using millis()
function which increments
every millisecond. ttag is used
to keep tack of when 60
seconds passes.

● If millis() is greater than ttag,
the temperature is published to
the mqtt server.

void loop() {
 char msg[64];
 client.loop();
 if(millis() > ttag) {
 ttag = millis() + 60000;
 Serial.println("Sending message");
 int a = analogRead(0);
 float v = (float)a / 1024;
 float t = (22.64 * v * v) – (119.89 * v) + 79.34;
 snprintf(msg,64,"lastname,%f",t);
 client.publish("gmu/temperature",msg);
 }
}

8

MQTT SLATE Code

● The reason a simple delay()
function is not used to wait 60
seconds is that client.loop()
has to be executed frequently.
The function services and
maintains the connection to the
mqtt server. Also when
completing the loop() function,
the WiFi connection is serviced
and maintain before loop() is
executed again.

void loop() {
 char msg[64];
 client.loop();
 if(millis() > ttag) {
 ttag = millis() + 60000;
 Serial.println("Sending message");
 int a = analogRead(0);
 float v = (float)a / 1024;
 float t = (22.64 * v * v) – (119.89 * v) + 79.34;
 snprintf(msg,64,"lastname,%f",t);
 client.publish("gmu/temperature",msg);
 }

9

MQTT SLATE Code

● The time tag set the current
millis() time plus 60000 for 60
seconds in the future.

● The analog voltage is
measured and converted to a
voltage.

● A text message is created with
snprintf() that contains the last
name and temperature.

● Lastly, the text message is
published to the mqtt server.

void loop() {
 char msg[64];
 client.loop();
 if(millis() > ttag) {
 ttag = millis() + 60000;
 Serial.println("Sending message");
 int a = analogRead(0);
 float v = (float)a / 1024;
 float t = (22.64 * v * v) – (119.89 * v) + 79.34;
 snprintf(msg,64,"lastname,%f",t);
 client.publish("gmu/temperature",msg);
 }

10

MQTT Python Code
● The python program will subscribe and collect

the data received. There are three functions
called callback functions. These execute
based on the event that occurred.

● The first one is on_connect(). It executes
when the program successfully connects to
the mqtt server. This function just displays the
text connected.

● The second callback function is
on_message(). It executes anytime a
message from a subscribed topic is received.
The topic is also included in case the python
program subscribes to more than one topic.

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))

def on_subscribe(client, obj, mid, granted_qos):
 print("Subscribed: " + str(mid

mqttc = mqtt.Client()
mqttc.on_message = on_message
mqttc.on_connect = on_connect
mqttc.on_subscribe = on_subscribe

mqttc.username_pw_set("gmu2021", "rockets41!")

mqttc.connect("cansat.info",1883)
mqttc.subscribe("gmu/temperature")
rc = 0
while rc == 0:
 rc = mqttc.loop()
print("rc: " + str(rc))

11

MQTT Python Code
● The on_subscribe() function executes when

the python program successfully subscribes to
a topic.

● The client object is created and named mqttc.

● The callback functions are declared and
assigned to the functions.

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))

def on_subscribe(client, obj, mid, granted_qos):
 print("Subscribed: " + str(mid

mqttc = mqtt.Client()
mqttc.on_message = on_message
mqttc.on_connect = on_connect
mqttc.on_subscribe = on_subscribe

mqttc.username_pw_set("gmu2021", "rockets41!")

mqttc.connect("cansat.info",1883)
mqttc.subscribe("gmu/temperature")
rc = 0
while rc == 0:
 rc = mqttc.loop()
print("rc: " + str(rc))

12

MQTT Python Code
● Next, the user name and password are set.

● The connection to the mqtt server is made.

● The topic is gmu/temperature is subscribed.

● Everything is now set up to collect temperature
data.

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))

def on_subscribe(client, obj, mid, granted_qos):
 print("Subscribed: " + str(mid

mqttc = mqtt.Client()
mqttc.on_message = on_message
mqttc.on_connect = on_connect
mqttc.on_subscribe = on_subscribe

mqttc.username_pw_set("gmu2021", "rockets41!")

mqttc.connect("cansat.info",1883)
mqttc.subscribe("gmu/temperature")
rc = 0
while rc == 0:
 rc = mqttc.loop()
print("rc: " + str(rc))

13

MQTT Python Code
● Now, the python program goes into an infinite

loop. In the infinite loop, mqttc.loop() is
repeatedly called. This is to service any mqtt
operation such as maintaining a connection to
the mqtt server and checking for messages
received. mqttc.loop() waits for any event to
occur.

● Run the python program.

● Run the SLATE program.

● The python program will display the
temperature measurement when it is received.

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))

def on_subscribe(client, obj, mid, granted_qos):
 print("Subscribed: " + str(mid))

mqttc = mqtt.Client()
mqttc.on_message = on_message
mqttc.on_connect = on_connect
mqttc.on_subscribe = on_subscribe

mqttc.username_pw_set("gmu2021", "rockets41!")

mqttc.connect("cansat.info",1883)
mqttc.subscribe("gmu/temperature")
rc = 0
while rc == 0:
 rc = mqttc.loop()
print("rc: " + str(rc))

14

MQTT Python Code
● To make the python more useful, the

on_message() callback function will be
modified to save the message to a file. Since
more than one student may send data, the
program will use the last name as the file
name and store the temperature data from
each student in their own file. It would also be
helpful to timetag the data so all the data from
all the students can be correlated.

● To get the current time, the python time
module needs to be imported as shown.

● Only the top portion of the code is shown
including on_message(). The rest of the code
is still needed.

import paho.mqtt.client as mqtt
import time

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))
 message = msg.payload.decode('utf-8')
 message = message.split(',')
 now = time.time()
 fd = open(message[0] + ".csv","a")
 b = str(now) + "," + message[1] + "\n"
 fd.write(b)
 fd.close()

15

MQTT Python Code
● The message received is converted into a

String.

● The message is split into a list with the
contents separated by a comma.

● The current time is saved to variable now.

● Next, a file is opened for appending. The file
name is the last name from the message
with .csv added to the end. The “a” tells the
open function to add to the file if it exists or
create the file if it does not exist.

import paho.mqtt.client as mqtt
import time

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))
 message = msg.payload.decode('utf-8')
 message = message.split(',')
 now = time.time()
 fd = open(message[0] + ".csv","a")
 b = str(now) + "," + message[1] + "\n"
 fd.write(b)
 fd.close()

16

MQTT Python Code
● Now, a string is created combining the time

and the temperature data separated by a
comma and with a line feed added to the end.

● The data is saved to the file with fd.write().

● The file is closed. This is done so that the next
time a message is received, the correct file will
be opened. Leaving a file open will cause an
error.

● Run the python program and verify the file has
been created and data is being added. The file
will reside where the python program is
located.

import paho.mqtt.client as mqtt
import time

def on_connect(client, userdata, flags, rc):
 print("Connected”)

def on_message(client, obj, msg):
 print(msg.topic + " " + str(msg.payload))
 message = msg.payload.decode('utf-8')
 message = message.split(',')
 now = time.time()
 fd = open(message[0] + ".csv","a")
 b = str(now) + "," + message[1] + "\n"
 fd.write(b)
 fd.close()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

