

File System Storage

 2

File System Storage

● There are times when storing data in a file can be useful. The data can be
collected from sensors or can be configuration data. Whatever it is, the FS
library provides a way to allocate some of the SLATE program memory for
storing files.

● The SLATE processor board can be set up to support a small file system.
Details can be found at

– https://arduino-esp8266.readthedocs.io/en/2.4.2/filesystem.html

● There are some limitations. Directories are not supported. It can be faked by
including slashes in the file name. The other limitation is that a total of 31
characters including slashes can be used in the file name. You have to be
careful to make sure you do not exceed the 31 characters as the compiler
will not detect that and strange things can happen.

● You program can create, write read, delete and rename files.

 3

File System Storage

● SLATE boards purchased before Fall 2018 have 1Mbyte
of Program memory. New SLATES have 4Mbytes. This
memory can be divided between the program and the file
system.

● In the Tools menu, select the Flash Size menu Item. A
selection of memory configurations are provided. The file
system size is indicated by the SPIFFS in parenthesis.
For the 1Mbyte SLATE board, up to half the memory can
be allocated for the file system. The 4MByte SLATE can
have up to ¾ of the memory allocated for the file system.

● Select one. Start with 128K for the 1MByte SLATE and
1M for the 4MByte slate.

 4

File System Uploader

● There is a tool that can be added to the Arduino IDE to let you upload files.
You can create files for your program to use and upload them after uploading
your program.

● Go to https://github.com/esp8266/arduino-esp8266fs-plugin/releases/tag/0.3.0

and download ESP8266FS-0.3.0.zip. It is possible the 0.3.0 may change since
the writing of this document.

● In the Arduino sketchbook directory where all your programs are stored, called
Arduino, create a directory named tools. The Arduino directory should be in
the computers Documents directory.

● Move the zip file to the tools directory. Unzip it in that directory. It will create
ESP8266FS/tool directories.

● Close the Arduino IDE and restart it. In the Tools menu, you should see
ESP8266 Sketch Data Upload

● Remember, you have to upload your program with the filesystem space
configured before uploading files.

https://github.com/esp8266/arduino-esp8266fs-plugin/releases/tag/0.3.0

 5

Creating a File

● First thing to do is include the
SPIFFS library.

● In setup(), the file system is
initialized with SPIFFS.begin().
This must be done before
accessing any files.

● This example, the file writing and
reading are done in setup() so it is
only executed once.

#include <FS.h>

void setup()
{
 Serial.begin(115200);
 SPIFFS.begin();
 File f = SPIFFS.open(“/file.txt”,”w”);
 f.println(“This is the first line”);
 f.println(“This is the second line”);
 f.close();
 delay(1000);
 f = SPIFFS.open(“/file.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\n');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

 6

Creating and Writing to a File

● First, a file is created by opening a
file for writing. object f is used to
access the file. File is the object for
connecting to the file in the file
system.

● The first argument is the file name.
The forward slash is required and is
used to indicate the top of the file
system.

● “w” indicates writing to the file.

● f.println() writes to the file similar to
how Serial.println() works to the
serial terminal.

● println(), print(), write() functions
can be used to send data to the file.

● Lastly, the file needs to be closed.

#include <FS.h>

void setup()
{
 Serial.begin(115200);
 SPIFFS.begin();
 File f = SPIFFS.open(“/file.txt”,”w”);
 f.println(“This is the first line”);
 f.println(“This is the second line”);
 f.close();
 delay(1000);
 f = SPIFFS.open(“/file.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\n');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

 7

Reading From a File

● The second half is reading the file
that was just written.

● The file is opened using the same
file name and replacing “w” with
“r”.

● Then a while loop is used to read
through the whole file one line at a
time. While there is data to read
from the file, the while loop keeps
executing. Once the end of the file
is reached, the while loop exits and
the file is closed.

#include <FS.h>

void setup()
{
 Serial.begin(115200);
 SPIFFS.begin();
 File f = SPIFFS.open(“/file.txt”,”w”);
 f.println(“This is the first line”);
 f.println(“This is the second line”);
 f.close();
 delay(1000);
 f = SPIFFS.open(“/file.txt”,”r”);
 while(f.available()) {
 String line = f.readStringUntil('\n');

Serial.println(line);
 }
 f.close();
}

void loop()
{
}

 8

File System Upload

● To uploada file, you need to create a directory in the program sketch
directory called data. Any files placed in this directory will be uploaded when
you click on ESP8266 Sketch Data Upload menu under Tools menu.

● This is useful for uploading html files, images and javascript libraries.

● This will become useful in the Simple Web server lesson.

Data

program

Arduino

Program.ino

Folder containing all the sketches

Folder of a sketchprogram2

Program2.ino

File Image
Files that get uploaded
For program.ino

 9

Other File System Functions

● SPIFFS.exists(“filename”);

– This returns true if the file exists.

● SPIFFS.remove(“filename”);

– Deletes the file.

● SPIFFS.rename(“oldfile”,”newfile”);

– Changes the file name from oldfile to newfile.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

