
MPU-6050 6 Axis IMU

Stensat Group LLC, Copyright 2018

 2

Introduction

● The MPU-6050 is a six degree of freedom Inertial Measurement Unit.
It consists of a 3-axis accelerometer and a 3-axis rate gyroscope.

● The accelerometer has a settable sensitivity range of 2Gs to 16 Gs.

● The rate gyroscope has a settable sensitivity range of 250 degrees
per second to 5000 degrees per second.

● In this lesson, the rate gyro will be used to determine orientation. The
library includes functions for calculating the angle of the sensor after
it is calibrated. A processing program will be used to graphically
demonstrate the orientation of the sensor.

 3

Connect the MPU-6050

● Connect the MPU-6050 to the I2C bus on the SLATE board.

● Connect the sensor VIN to the SLATE 3.3V.

● Connect the sensor GND to the SLATE GND.

● Connect the sensor SCL to the SLATE D5 SCL.

● Connect the sensor SDA to the SLATE D4 SDA.

 4

MPU-6050 Library

● Download the library from www.stensat.org. This library was modified
to work properly on the ESP8266 SLATE board.

● In the Arduino IDE, select the Sketch menu and then select Include
Library. Select Add .ZIP file. Locate the file and select it. It will be
added to your library.

● In the File menu, select Examples then locate MPU6050_tockn.
Select GetAllData. The program will open in a window.

● Compile and upload the program.

● When done uploading, open the Serial monitor and make sure the
baud rate is set to 115200.

● When the program starts, it will spend about 3 seconds calibrating.
Make sure the sensor is not moving during this time. It will calibrate
right after the code finishes uploading.

http://www.stensat.org/

 5

The Code

● In the program loaded, the sensor library is included at line 1. Line 2
loads the I2C library.

● Line 4 creates a sensor object. The argument is Wire which tells the
library to use the I2C interface. This is done to allow multiple I2C
buses to be used. Only one is used here.

● The timer variable in line 6 is used to track the time and have the
display updated sensor data once a second.

● Lines 8-13 is the setup function. The serial interface is configued
then the I2C interface. Next the sensor is configured with the
accelerometer set to 2G range and the gyro set to 500 degrees per
second rotation rate range.

● Line 12 calls a library function to calibrate the gyroscope. The
gyroscope has what is called a DC offset or constant offset. This is
an error that all sensors have and can be measured with the sensor
not moving. The library subtracts the offset from all measurements.

 6

The Code

● Lines 15 – 41 is the loop function.

● Line 16 determines if a second has passed. If so, the reset of the
code is executed.

● Line 17 is the function that collects the sensor data. The results are
kept in the library variables.

● Lines 19-26 display the sensor results Notice that the values
displayed are function calls. mpu6050.getTemp() will return the
temperatuer in Celcius. mpu6050.getAccx() will return the X-axis
accelerometer value in Gs and so on. Notice the values are in
floating point and processed from the raw values.

 7

The Code

● Lines 28 and 29 return the sensor angle in the X and Y axis based
on the accelerometer.

● mpu6050.getAccAngleX() returns an angle in degrees referenced to
the Z and X axis.

● mpu6050.getAccAngleY() returns the angle in degrees referenced to
the Z and Y axis.

● mpu6050.getGyroAngleX() returns the angle calculated by the
accumulation of the rate gyro around the X axis.

● mpu6050.getGyroAngleY() returns the angle calculated by the
accumulation of the rate gyro around the Y axis.

● mpu6050.getGyroAngleZ() returns the angle calculated by the
accumulation of the rate gyro around the Z axis.

 8

The Code

● mpu6050.getAngleX() provides the angle around the X axis based
on the combination of the accelerometer and gyro.

● mpu6050.getAngleY() provides the angle around the Y axis based
on the combination of the accelerometer and gyro.

● mpu6050.getangleZ() provides the angle around the Z axis based on
the combination of the accelerometer and gyro.

● These three functions provide the best orientation value of the
sensor and can be used to indicate the orientation of any device it is
connected.

 9

IMU Demonstration

● This next program will
demonstrate how the sensor
can be used to control the
orientation of an object in a 3D
rendered program.

● The demonstration will use a
wireless connection using UDP
packets. UDP packets allow for
higher rates of data
transmission. It is possible for
some packets to be lost but for
this demonstration, lost packets
are not an issue.

 10

IMU Demonstration SLATE Code

● The SLATE program will send
UDP packets. Initialization is
similar to the example program
but only the angles for the three
axis are sent.

● The code to the right is the setup
portion. Most of it is the same as
before. The addition is the WiFi
configuration.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include <MPU6050_tockn.h>
#include <Wire.h>

WiFiUDP client;

MPU6050 mpu6050(Wire);
long timer = 0;
char buf[64];

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);

mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
 WiFi.mode(WIFI_AP);
 WiFi.softAP("UDPIMU");
}

 11

IMU Demonstration SLATE Code

● The loop function updates
the sensor values.

● It then creates a string using
snprintf() with the three
angles separated by a
comma.

● The last three lines send the
UDP packet.

● client.beginPacket()
identifies the target IP
address and port number.

● client.write() fills the packet
with the string.

● client.endPacket() sends
the packet.

void loop() {
 if(millis() - timer > 100) {
 mpu6050.update();
 timer = millis();
 snprintf(buf,64,"%f,%f,%f\n",

mpu6050.getAngleX(),
mpu6050.getAngleY(),
mpu6050.getAngleZ());

 Serial.print(buf);

client.beginPacket("192.168.4.2",3000);
 client.write(buf);
 client.endPacket();
 }
}

 12

IMU Demonstration SLATE Code

● The data is sent 10 times a
second. the rate is controlled
by the value 100 in the
highlighted line. It is the
number of milliseconds
between samples. It can be
changed.

void loop() {
 if(millis() - timer > 100) {
 mpu6050.update();
 timer = millis();
 snprintf(buf,64,"%f,%f,%f\n",

mpu6050.getAngleX(),
mpu6050.getAngleY(),
mpu6050.getAngleZ());

 Serial.print(buf);

client.beginPacket("192.168.4.2",3000);
 client.write(buf);
 client.endPacket();
 }
}

 13

IMU Demonstration Processing Code

● The processing code receives the UDP
packets.

● First, select UDP in the Sketch Import
Library menu. If you do not have the UDP
library, select Add Library in the Import
Library menu. Locate the UDP library at
the bottom of the list. Internet access is
required.

● The UDP object p is declared. A global
string message is created. It will hold the
data received from the SLATE.

● In the setup() function, the window size is
set. The extra argument P3D directs the
program to use 3D acceleration.

import hypermedia.net.*;

UDP p;

String message;

void setup() {
 size(800, 700, P3D);
 p = new UDP(this,
3000);
 p.listen(true);
}

 14

IMU Demonstration Processing Code

● Next the UDP port is configured. All UDP
packets are to go to port 3000.

● p.listen(true) tells the program to monitor
for UDP packets.

import hypermedia.net.*;

UDP p;

String message;

void setup() {
 size(800, 700, P3D);
 p = new UDP(this,
3000);
 p.listen(true);
}

 15

IMU Demonstration Processing Code

● UDP packets are
captured with the
receive() function
below.

● The receive() function
is an event function. It
only executes when a
UDP packet is
received. The function
copies the information
received into the
message string.

void draw() {
 if (message != null) {
 spotLight(255, 0, 0, 500, 0, 0, -1, 0, 0, 50,
1);
 spotLight(0, 255, 0, 0, 500, 0, 0, -1, 0, 50,
1);
 spotLight(0, 0, 255, 0, 0, 500, 0, 0, -1, 50,
2);
 camera(50, 500, 50, 0, 0, 0, 0, 0, 1);
 String[] dat = message.split(",");
 float x = float(dat[0])/360.0 * 6.28;
 float y = float(dat[1]) /360.0 * 6.28;
 float z = float(trim(dat[2])) / 360.0 * 6.28;
 println(x + " " + y + " " + z);
 background(0); background to black
 pushMatrix();
 rotateY(y);
 rotateX(x);
 rotateZ(z);
 fill(250, 250, 250);
 box(100, 100, 50);
 popMatrix();
 }
}

void receive(byte[] data, String ip, int port)
{
 message = new String(data);
}

 16

IMU Demonstration Processing Code

● The draw() function
renders the 3D object.
First, the message
string is checked to
see if there is any
data.

● If there is data, the
scene is created.
Three spot lights are
created with colors
red, green and blue
pointing to the center
of the scene from
three directions.

void draw() {
 if (message != null) {
 spotLight(255, 0, 0, 500, 0, 0, -1, 0, 0, 50, 1);
 spotLight(0, 255, 0, 0, 500, 0, 0, -1, 0, 50, 1);
 spotLight(0, 0, 255, 0, 0, 500, 0, 0, -1, 50, 2);
 camera(50, 500, 50, 0, 0, 0, 0, 0, 1);
 String[] dat = message.split(",");
 float x = float(dat[0])/360.0 * 6.28;
 float y = float(dat[1]) /360.0 * 6.28;
 float z = float(trim(dat[2])) / 360.0 * 6.28;
 println(x + " " + y + " " + z);
 background(0); background to black
 pushMatrix();
 rotateY(y);
 rotateX(x);
 rotateZ(z);
 fill(250, 250, 250);
 box(100, 100, 50);
 popMatrix();
 }
}

void receive(byte[] data, String ip, int port) {
 message = new String(data);
}

 17

IMU Demonstration Processing Code

● The camera is
positioned and points to
the center of the scene
with coordinates at
(0,0,0).

● Next the message string
is split into three
elements for X, Y and Z.

● The elements are
converted to floating
point values. These
values are the angles.

● The z value includes the
trim function which
removes the line feed
from the string.

void draw() {
 if (message != null) {
 spotLight(255, 0, 0, 500, 0, 0, -1, 0, 0, 50, 1);
 spotLight(0, 255, 0, 0, 500, 0, 0, -1, 0, 50, 1);
 spotLight(0, 0, 255, 0, 0, 500, 0, 0, -1, 50, 2);
 camera(50, 500, 50, 0, 0, 0, 0, 0, 1);
 String[] dat = message.split(",");
 float x = float(dat[0])/360.0 * 6.28;
 float y = float(dat[1]) /360.0 * 6.28;
 float z = float(trim(dat[2])) / 360.0 * 6.28;
 println(x + " " + y + " " + z);
 background(0); background to black
 pushMatrix();
 rotateY(y);
 rotateX(x);
 rotateZ(z);
 fill(250, 250, 250);
 box(100, 100, 50);
 popMatrix();
 }
}

void receive(byte[] data, String ip, int port) {
 message = new String(data);
}

 18

IMU Demonstration Processing Code

● Next, the display is
cleared to black.

● The object which is a
rectangular box is then
rotated in all axis to
the angles generated
by the sensor.

● The box is colored
white so the colors
from the lights can be
seen clearly.

● The box is then
rendered.

void draw() {
 if (message != null) {
 spotLight(255, 0, 0, 500, 0, 0, -1, 0, 0, 50, 1);
 spotLight(0, 255, 0, 0, 500, 0, 0, -1, 0, 50, 1);
 spotLight(0, 0, 255, 0, 0, 500, 0, 0, -1, 50, 2);
 camera(50, 500, 50, 0, 0, 0, 0, 0, 1);
 String[] dat = message.split(",");
 float x = float(dat[0])/360.0 * 6.28;
 float y = float(dat[1]) /360.0 * 6.28;
 float z = float(trim(dat[2])) / 360.0 * 6.28;
 println(x + " " + y + " " + z);
 background(0); background to black
 pushMatrix();
 rotateY(y);
 rotateX(x);
 rotateZ(z);
 fill(250, 250, 250);
 box(100, 100, 50);
 popMatrix();
 }
}

void receive(byte[] data, String ip, int port) {
 message = new String(data);
}

 19

IMU Demonstration Processing Code

● The draw() function
executes at about 60
Hz which is the typical
video refresh rate.

● If the message string
is not updated, the
current value is
processed and used
again.

● Run the program and
move the sensor
around.

void draw() {
 if (message != null) {
 spotLight(255, 0, 0, 500, 0, 0, -1, 0, 0, 50, 1);
 spotLight(0, 255, 0, 0, 500, 0, 0, -1, 0, 50, 1);
 spotLight(0, 0, 255, 0, 0, 500, 0, 0, -1, 50, 2);
 camera(50, 500, 50, 0, 0, 0, 0, 0, 1);
 String[] dat = message.split(",");
 float x = float(dat[0])/360.0 * 6.28;
 float y = float(dat[1]) /360.0 * 6.28;
 float z = float(trim(dat[2])) / 360.0 * 6.28;
 println(x + " " + y + " " + z);
 background(0); background to black
 pushMatrix();
 rotateY(y);
 rotateX(x);
 rotateZ(z);
 fill(250, 250, 250);
 box(100, 100, 50);
 popMatrix();
 }
}

void receive(byte[] data, String ip, int port) {
 message = new String(data);
}

