

Websockets

What are Websockets

● A websocket is a separate
network connection usually
between a javascript running in a
web browser and the web server.
It provides a more efficient way to
pass information between the
browser and the web server. This
allows for interactive and real
time updating of information on a
web browser.

● The simple web server lesson
used static web pages and
required the browser to reload
web pages to update information.

● Most real time interaction is done
with javascript embedded in the
web page. Web sockets are also
available for PHP.

Web
Server

Websocket
Server

Web Browser
Page

Javascript

HTTP

W
eb

so
ck

et

Websocket Implementation

● In the SLATE processor, two servers need to operate, the web server and
the websocket server.

● The web server will use a static web page using the server.serveStatic()
function. A separate html file will be uploaded into the file system.

● The websocket server will call a function when ever a message is received
from the web page javascript program.

● In this example, the SLATE will use a web page to provide a user interface
to turn two LEDs on and off individually.

● Open the program websocketsample and follow along the explanation.

● A library is needed to use websockets. Open the Library Manager and
search for websockets. Find the library called Websockets by Markus
Sattler. Install the latest version.

Websocket Server Program

● The first three lines include the needed libraries. For static pages, the file
system library is included and the websockets server library is installed.

● Skip to line 47 for the setup() function. The two digital ports used to control
the LEDs are set to output. Connect pin 12 to the red LED and pin 13 to the
yellow LED.

● The file system is initialized at line 51.

● Lines 52, 53 set up the WiFi to operate as an access point.

● Line 54 sets up the link to access the html file from the file system.

● Line 55 starts the web server.

● Line 56 sets up the websocket server to call the function webSocketEvent()
when a websocket message is received.

● Line 57 starts the websocket server.

Websocket Server Program

● The loop() function checks the websocket and the web server.

● Each function checks for a packet or message being received and the
processes it.

● The webSocket.loop() function will call webSocketEvent() when a packet
is received from the javascript program.

● The server.handleClient() function will process the http packet received
and send the requested web page.

Websocket Server Program

● Going back to line 9, This function is called when a websocket packet is
received. The server passes four arguments. First is the connection number
that is not used in the example. The second is the type of packet received.
The third is the contents of the packet and the last argument is the size of
the contents, the number of bytes.

● Line 10 is a switch() statement that is used to determine how to process the
different types of packets.

● Line 11 is executed is the client closes the websocket connection.

● Line 14 is executed if the packet type is a connection being established. The
web browser IP address is displayed in the serial terminal in this example.
This packet type is useful if things need to be initialized when a connection
is made.

Websocket Server Program

● Line 20 is executed when a text type packet is received. Strings can be sent
and received this way.

● Line 21 is another switch() statement that determines which case is
executed to turn the specified LED on or off.

● Line 38 is executed when a binary packet is received. This is not used in this
 example.

HTML File Description

● The html file creates the user interface. A canvas is created and four buttons
below it are created.

● Open the index.html file in the data folder. Use a text editor to open it.

● Line 1 is the minimum needed to define the file is an html file.

● Line 2 creates the canvas that is 600 pixels wide by 400 pixels tall.

● Lines 4 -7 create buttons below the canvas.

– onclick=”send_command('1')” tells the browser to call the javascript function
send_command() to execute.

– Each button calls the same function with a different argument.

HTML File Description

● Lines 10-48 is the javascript program. Line 9 is a tag that indicates the
following text is to be interpreted as javascript. Line 49 </script> indicates
the end of the javascript code.

● Line 10 links variable c to the canvas. Notice line 2 has id=”can”. This is
used to link the canvas to the javascript code.

● Line 11 creates a graphic variable ctx that lets 2D graphics commands to be
used in the canvas.

● Lines 12 and 13 create variables to hold the state of the LEDs and initializes
them to 0.

● Line 14 calls the function update_display() that updates the contents in the
canvas.

HTML File Description

● Line 15 makes the websocket connection to the server.

– ws://192.168.4.1:81/ is the address.

– ws indicate a websocket type connection.

– 192.168.4.1 is the IP address

– 81 is the socket port number.

– The rest is required as is.

● Line 16 is an event function that sends error messages to the browser
console. The browser console is activated in the browser under the
developer menu.

● Line 17 sets up an event function that executes when a websocket packet is
received at the browser.

HTML File Description

● Line 18 copies the packet contents received to the dat variable.

● Line 19 breaks up the packet into 3 elements. The message sent from the
server has three parts separated by a space.

– First element should containt LED. This is checked to make sure the proper
message is received.

– The second element is the LED number.

– The third element contains either ON or OFF

– Lines 20 through 28 check the message and sets the led1_state and led2_state
variables to the appropriate value based on the packet content.

– Line 29 refreshes the canvas with the updated state of th LEDs.

HTML File Description

● Lines 31 - 33 are for the send_command() function. It's a simple function. All it
does is send the argument to the websocket server. The argument contains the
text from the button.

● Lines 34 – 48 updates the contents of the canvas.

● Line 35 clears the canvas to the background color which is white.

● Line 36 sets the font and size.

● Line 37 sets where the coordinates reside relative to the text to be displayed. It is
set to align to the center of the text.

● Line 38 sets the color of the text.

● Line 39 renders the text in the canvas at the specified location.

● Lines 40-42 set the color for the red LED. If led1_state is zero, the color will be
grey otherwise it will be bright red.

● Line 43 draws a rectangle in the specified color.

● Lines 44 – 47 do the same for the second LED.

Uploading

● First compile and upload the code.

● Once the code is uploaded, select the Tools menu and select ESP8266
Sketch Data Upload.

● It does take a while to upload the data folder. The duration depends on the
size of the file system.

● After everything has uploaded, connect to the webserver and try out the web
page.

