
Sten-SLATE ESP Kit
Inputs

Stensat Group LLC, Copyright 2020

2

SoftwareSoftware

HardwareHardware

Serial Input

The STENSLATE supports different types of
inputs, in this lesson, the serial input will be
explained. The serial input allows information to
be sent to the STENSALTE through the USB port.

In the first example, any byte received through
the serial interface is sent back out the serial
interface. The program basically echos all bytes
received. Compile and upload the program. Give
it the name serial_echo. Open the Serial Monitor
window. In the top text entry, enter a sentence
and press the Enter key. What was typed in
should appear in the large text area below.

The loop() executes repeatedly. The function
Serial.available() checks to see if any bytes have
been received. It will return the number of bytes
received. The function Serial.read() returns what
byte was received. Only one byte is returned at a
time. If multiple bytes are available, the
Serial.read() function needs to be executed for
each of the multiple bytes.

The STENSLATE uses a USB to UART adapter
to convert the USB port to a serial interface that
the processor uses for communications with the
USB port. The Serial library has software that
works in the background managing buffers. When
bytes are received through the serial interface,
they are stored in the receive buffer. Up to 64
bytes can be stored in the receive buffer. The
Serial.available() function checks to see how
many bytes are in the receive buffer and returns
the number of bytes in the buffer. If no bytes are
available, Serial.available() returns zero.
Serial.read() will return the first byte received in
the buffer, if there are no bytes in the buffer,
Serial.read() will return some random value.
Serial.read() does not wait for a byte to be
received. This is why Serial.availabl() is called to
check is any bytes have been received.

void setup() {
 Serial.begin(115200);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 Serial.write(a);
 }
}

Example 1

USB/UART
Adapter

USB/UART
Adapter

ESP8266
UART

ESP8266
UART

Transmit
Buffer

Transmit
Buffer

Receive
Buffer

Receive
Buffer

ProgramProgram

3

Serial Input

The next program will show how to
receive multiple bytes and store them in
an array. This is useful if text is being
sent that needs to be parsed to perform
an operation.

Two new functions are shown. First is
bzero(). This function clears the char
array buf by setting all the bytes to zero.
This is performed because the function
Serial.readBytesUntil() only fills the
array with the bytes received. Old bytes
previously received will not get over
written if the function receives less bytes
than previously received.

Serial.readBytesUntil() function has
three arguments. The first argument
specifies the terminating byte value. In
the example, it is the control code for a
line feed. For carriage return, the control
code is ‘\r’.

Compile and upload the program. Open
the serial monitor. At the bottom to the
left of the baud rate setting which should
be at 115200, select Newline. With this
selected, every time you enter text at the
top and press enter, the line feed
character is added to the end of the text.
Enter some text and observe the results.
The same text should have appeared
immediately. Change the Newline
setting to Carriage return. Enter the
text again and notice the delay in the
text appearing below. This is due to the
Serial.readBytesUntil() function timing
out. By default, if the terminating byte is
not received within a second of the
function call, it will return with whatever
bytes it has received.

char buf[64];

void setup() {
 Serial.begin(115200);
}

void loop() {
 if(Serial.available() > 0) {
 bzero(buf,64);
 Serial.readBytesUntil(‘\n’,buf,64);
 Serial.println(buf);
 }
}

There is a built in timeout for the
Serial.readBytesUntil() function and the
default it 1 second. The time out can be
adjusted using the Serial.setTimeout()
function. The argument is time in
milliseconds. The Serial.setTimeout()
function must be placed after the
Serial.begin() function. Modify the above
code and add the Serial.setTimeout()
function with different delays and see
how it works.

If more than 64 bytes are sent to the
serial port at a time, the
Serial.readBytesUntil() will take in the
64 bytes and return leaving the reset in
the receive buffer to be read later. This
avoids buffer overruns which can cause
the software to crash.

4

Parsing Byte Array

Now that a byte array can be received,
the byte array can be parsed using the
sscanf() function. The sscanf()
function requires the string.h include
file.

The first argument for sscanf() is the
array to be scanned which is buf. The
second argument is the format of the
byte array which is expected to be a
text string. Shown in the code are two
integers separated by a space. An
integer is indicated by %d. The
remaining arguments is the list of
variables to be filled by sscanf() with
the values in the text string. Notice the
& sign in front of the variable name.
This is used to pass the location of the
variable in memory to the sscanf()
function. The number of %d must
match the number of variables listed.

Try the program and enter two integer
values separated by a space in the
serial monitor window. You should
have the values entered displayed
below. try separating the two numbers
with a coma? The output should not
match. This is because, the format in
the second argument must be
matched. You can use comas or
colons or other character to separate
the values.

You can even input floating point
values by replacing %d with %f. try it
and do not forget to change the
variables from int to float.

#include <string.h>
char buf[64];

void setup() {
 Serial.begin(115200);
}

void loop() {
 int a,b;
 if(Serial.available() > 0) {
 bzero(buf,64);
 Serial.readBytesUntil(‘\n’,buf,64);
 sscanf(buf,”%d %d”,&a,&b);
 Serial.print(a);
 Serial.print(“ “);
 Serial.println(b);
 }
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4

