
Sten-SLATE ESP Kit
Sensors

Stensat Group LLC, Copyright 2020

2

Sensors

3

Mounting Sensors

There are two locations marked SENSOR for mounting sensor modules. They require
screws and nuts to be installed for mounting sensor modules. Eight screws and nuts are
required. Insert the screw through the hole from underneath the board and secure with a
nut on the top side. Repeat for the remaining seven holes.

½ inch screw
and nut

4

Analog Sensors

This section introduces analog sensors,
a light sensor and a thermal sensor.
These two sensors are variable resistors
that change resistance based on what
they measure.

The SLATE ESP has an analog-to-digital
converter, ADC for short, that converts a
voltage to a value. The SLATE ESP ADC
has a voltage range of 0 to 1 volt. It is a
10 bit ADC which means it generates a
number with a range from 0 to 1023. 0
volts results in a value of 0. 1 volt will
generate a value of 1023. There is a
linear relationship between the voltage
and the value generated by the ADC.
The voltage can be calculated using the
equation below:

 V = ADC / 1023.0

If 0.5 volts is applied to the ADC, the
value generated will be 51..

The Experimenters board has one ADC
input as highlighted in the image. A 1 volt
reference is included at pin V3 for any
sensor circuit that needs it such as the
light and thermal sensor. Pin GND is the
0 volt reference. Pin ADC is the input.

5

Analog Sensors

The light and thermal sensors are resistive
type sensors. Their resistance changes based
on what they measure. The ADC cannot
measure resistance, only voltage. A voltage
divider can generate a voltage based on the
resistance of the sensor. The only problem is
that the full range of the ADC may not be used
since the resistor divider will not allow a full
voltage swing from 0 to 1 volt.

The thermal sensor is called a thermistor. It's
resistance changes with temperature. Their
nominal resistance is specified at 25C. This
particular sensor is at 10 Kohms at 25C. The
table below shows the resistance at different
temperatures.

The thermistor is resistor R2 as shown in the
circuit. R1 is a 10 Kohm resistor. At 25C, the
thermistor will be 10 Kohm. This divides the 1
voltage to 0.5 volts. The ADC will generate 511.
As the temperature goes higher, the resistance
decreases and the voltage to the ADC also
decreases. As the temperature goes lower, the
resistance increases and the voltage
increases.

R1

R2

Battery

Vout

+V

0V

Vout = +V * R2/(R1+R2)

Temperature C Resistance
Ohms

0 32960

5 25580

10 20000

15 15760

20 12510

25 10000

30 8048

35 6518

40 5312

45 4354

50 3588

Thermistor Resistance Table

Voltage Divider Circuit

6

Thermistor

The plot of resistance versus temperature shows the thermistor does not have a linear response
to temperature. The thermistor table can be entered into a spreadsheet and plotted using the
scatter plot. The voltage can also be added and shown in the plot. The shows the relationship of
voltage out of the voltage divider and resistance versus temperature.

The voltage plot almost looks linear and if a rough temperature is only needed, then a linear
equation can be generated to calculate the temperature based on voltage.

0 10 20 30 40 50 60
0

5000

10000

15000

20000

25000

30000

35000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Thermistor Plot

Resis-
tance

Temperature (C)

R
e

si
st

a
n

ce
 (

o
h

m
s)

V
o

lta
g

e
 (

V
)

7

Thermistor

For better temperature accuracy, the voltage and temperature can be plotted in the spreadsheet with
the temperature on the Y axis. The spreadsheet can generate a polynomial that can approximate the
curve in the plot. Below is the equation generated.

Temperature = 22.64 * voltage * voltage - 119.89 * voltage + 79.34

This equation will be used in the program on the next page.

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

10

20

30

40

50

60

f(x) = 22.64 x² − 119.89 x + 79.34

Temperature vs Voltage

Voltage (V)

T
e

m
p

e
ra

tu
re

 (
C

)

8

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 volts = (float)a/1023.0;
 float t = (22.64*volts*volts) – (119.89 * volts) +79.34;
 Serial.println(t,2);
 delay(200);
}

Thermistor

Insert the Sensor module onto the
screws in the left sensor area. Secure
with #4 nuts. Use three jumper wires to
connect the thermistor to the ADC.

Enter the code below and upload and
run it. The result will be the air
temperature. Place a finger on the
sensor and see if the temperature rises.

9

Light Sensor

The light sensor is a light sensitive
resistor. It's resistance decreases as
the light intensity increases. At 100
lux, the resistance is 5 Kohms. In the
dark, the resistance can reach up to
20 megaohm. It is connected similarly
as the thermistor taking the place of
R1 in the voltage divider circuit.
Voltage will increase as the light
intensity increases and the voltage
decreases as light intensity
decreases. There is no calibration
data for the sensor. It is used as
general light intensity detector and
generally used to detect darkness to
turn lights on.

Enter the code in a new program and
try it out. Use a flash light to shine
light on the sensor and see how the
voltage changes.

void setup()
{
 Serial.begin(115200);
}

void loop()
{
 int a;
 float volts;
 a = analogRead(0);
 Serial.println(a);
 volts = (float)a/1023.0;
 Serial.println(volts,2);
 delay(200);
}

10

Ultrasonic Sensor

The ultrasonic sensor uses bursts of sound to
measure distance. The sensor transmits a short
40 KHz tone and then measures the time it takes
the tone to be reflected back.

The distance measurement is started by the Trig
pin being pulsed high for at least 10 us. The
sensor will then transmit a very short 40 KHz
tone and wait for the echo to be detected. The
sensor calculates the delay time and generates
a pulse with the width proportional to the delay.
Distance can be calculated by measuring the
pulse width in microseconds and dividing by 58
to get centimeter values.

Trig

Transducer

Receiver

Echo

10us pulse on Trig pin

40 Khz burst signal

Echo from target

Pulse on Echo pin

Delay

distance = pulse width (us) / 58

11

void setup()
{

Serial.begin(115200);
pinMode(14,INPUT);
pinMode(16,OUTPUT);

}

void loop()
{

unsigned long distance;
digitalWrite(16,LOW);
delayMicroseconds(2);
digitalWrite(16,HIGH);
delayMicroseconds(10);
digitalWrite(16,LOW);
distance = pulseIn(14,HIGH);
distance = distance/58;
Serial.println(distance);
delay(500);

}

Ultrasonic Range Sensor

The picture shows where to install the
jumper wires to connect the ultrasonic
range sensor. GND is connected to the
GND pin on the digital port. 5V is
connected to the USB 5V pin. Trigger is
connected to D16. Echo is connected to
D14.

Enter the code below in a new program
and run it. Use a solid object or hand
and move it to and from the sensor. A
ruler can be used to verify the accuracy
of the sensor. It can measure down to 3
centimeters.

12

Creating a Function

Using the ultrasonic range sensor program, it
will be modified to become a standalone
function. A function is a group of instructions
with a name that can be called from a program.
Functions are useful for where there is an
operation that is used in multiple places in a
program. This helps eliminate the need to
rewrite the same code in different parts of the
program. It also allows the function to be used in
different programs.

Select Save As... under the File menu. Give the
program the name ultrasound_f. Next delete
the function setup() that is highlighted. Also
delete the last two function calls at the end of
the loop() function.

As shown in the lower right, change the void
loop() to the name of the function. Insert the
return command at the end of the new function.

Select Save from the File menu.

void setup()
{
 Serial.begin(115200);
 pinMode(14,INPUT);
 pinMode(16,OUTPUT);
}

void loop()
{
 unsigned long distance;
 digitalWrite(16,LOW);
 delayMicroseconds(2);
 digitalWrite(16,HIGH);
 delayMicroseconds(10);
 digitalWrite(16,LOW);
 distance = pulseIn(14,HIGH);
 distance = distance/58;
 Serial.println(distance);
 delay(500);
}

unsigned long ultrasound_f()
{
 unsigned long distance;
 digitalWrite(16,LOW);
 delayMicroseconds(2);
 digitalWrite(16,HIGH);
 delayMicroseconds(10);
 digitalWrite(16,LOW);
 distance = pulseIn(14,HIGH);
 distance = distance/58;
 return(distance);
}

13

Creating a Separate Function
File

Create a new program. Enter the program
shown. Save it with the name ranging. You
will notice the tab for the program is now
named ranging.

Under the Sketch menu, select Add File...
Locate and select ultrasound_f file. You
have to go to the ultrasound_f folder to
locate ultrasound_f.ino. A new tab will
appear with the ultrasound function.
Compile and upload it.

void setup()
{

Serial.begin(115200);
pinMode(14,INPUT);
pinMode(16,OUTPUT);

}

void loop()
{

unsigned long distance;
distance = ultrasound_f();
Serial.println(distance/58);
delay(500);

}

Arduino with two tabs.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

