
Sten-SLATE ESP Kit
Python

Stensat Group LLC, Copyright 2020

2

Python

3

Python IDE

Python is an interpreted language. This means that a compiler is not used to generate a
executable file. Instead, the python program interprets the written program directly. This
lesson assumes basic knowledge of python. You can learn the basics of python at
www.learnpython.org

There are a few ways to write python programs. The method shown here is very simple and
straight forward. This lesson will introduce you to the pygame library and the socket library
that will be used to interact with the SYST101 and SYST395 kits.

Both Windows and Mac OS X will be covered.
For Windows, it is assumed Windows 10 or Windows 7 is being used. Python version 3.8.7
will be used.

Go to www.python.org and select Downloads. Locate the latest Python version 3.8.

Scroll down to Files and select Windows x86-64 executable installer.

Once downloaded, start the installer program. At the start windows, select Add Python 3.8 to
Path then click on Install Now. Python will now install and show up in the Start menu. Close
the window when the installation has completed.

In the start up menu, select Windows Powershell and select Windows Powershell. Do not
select the ISE version.

In the Powershell, type pip3 install tk and press Enter. This will install the TK library for
Python. Once completed, exit Windows Powershell. This completes the installation. To start
Python, select Python IDLE in the Start menu.

http://www.learnpython.org/
http://www.python.org/

4

Python For Mac OS X

It is assumed the latest Mac OS X release is being used. Go to
www.python.org/downloads/mac-osx

Locate python 3.8.2 and select Mac OS 64-bit installer.

The installer will be downloaded. Once downloaded, double click on the program and it will go
through the installation process. Once installed, the Python 3.8 will be located in the Application
folder. Open the Python 3.8 folder and you can double click on IDLE.app to start Python.

To install the TK library, open the terminal application. In the terminal application enter the following:

pip3 install tk and press Enter.

The library will be installed.

http://www.python.org/downloads/mac-osx

5

Python IDLE

The Python IDLE is a python shell. You can enter python commands and and they will execute
immediately.

Start Python IDLE. At the >>> prompt, enter the command:

Equations can be entered and Python will generate the answer:

Python uses indentation to define a block of code. This means all code indented after an if
statement, while statement or other conditional statement will be executed.

After entering the above, press enter again. The commands will execute.

Here is a while loop:

You can stop the while loop by pressing <Ctrl> and C keys.
The IDLE will also let you create new programs using an editor. Select menu File and New. An
editor will open and you can enter a python program. Try the program above with the while loop.
Save the file. You will be prompted for a name. By convention, use .py for the file name extension.
Once saved, select menu Run and Run Module. Press CTRL and C to stop the program. Now you
should have a basic understanding on using the IDLE.

>>>print(“Hello world”)
Hello world

>>>5+3
8

if 10 > 5:
print(“10 is larger”)
print(“Second line”)

while 1:
print(“this is a loop”)

6

Basic Python

Variables are used to store values or
strings. You do not need to declare what
type of variable it is. It is automatically
determined when a value is assigned.
Variables can change types by assignment.
Variables must start with a letter. It cannot
start with a number. Variables can only be
made up of letters, numbers and _.

Math operations are simple in Python. Just
use equations.
Notice the # sign and the text to the right.
This is a comment. Comments are useful
to explain what the code is supposed to do.

Variable and values can be compared with
each other. Python provides multiple ways
to do comparisons
== is equal
!= is not equal
> greater than
< less than
>= greater than or equal
<= less than or equal
Enter the code into a program and run it.
You can change the values of the variables
and see how execution changes.

a = 5
b = “Fred”
print(a)
print(b)
print(a,b)

a = 5
print(a)
a = “Fred”
print(a)

a = 5 + 6 # addition
b = 12.43 # floating point
c = b – 3.14 # subtraction
dog = 45.834 # assignment
cat = dog * b # multiplication
dd = cat / a # division

a = 45
b = 32
if a > b:

print(“a is greater than b”)
if a < b:

print(“a is less than b”)
if a == b:

print(“a is equal to b”)
if a != b:

print(“a is not equal to b”)

7

Rules of Python Coding

When indenting, it is very critical to use the same number of spaces otherwise the code will not be
interpreted correctly. Indented code is used to identify code associated with while, for, if and
functions. Tabs and spaces are not interchangeable and will cause program errors or incorrect code
execution. Using the IDLE editor will help keep the indentation uniform. Problems can occur if you
import code from elsewhere and tabs and spaces are not used consistently.

8

First GUI Program

The Tk or Tkinter library will be used for creating a
graphical user interface in the following example
programs. Tkinter treats all user interfaces called
widgets and graphical components as objects.
Widgets includes buttons, pull down menus. radio
buttons, text entry, selectors, sliders and canvases.
Each widget can be customized in size, color, etc.

The first program will introduce buttons and the
canvas. The buttons are clicked on with a mouse
and the canvas is an area to render graphics.

The black region is the canvas and the two buttons
are stacked below the canvas.

When clicking on either button, the click action will
execute the corresponding function.

The two rectangles rendered in the canvas are also
objects. They can be created and assigned to a
unique variable. This will allow the rectangles to be
modified later. In this example, the color is modified.

Note that the graphic objects are rendered in order
of code execution. A graphic object can be on top of
another. Modifying the object does not change which
is on top.

Widgets are stacked in order of execution from top
to bottom using the pack() function. There are other
window managers to allow more flexible layouts.

The Tkinter library is a event based library in that
functions are called when events occur such as
clicking on a button or entering text in a text widget
or doing changing any widget. You will notice that all
the python programs using Tkinter end with
mainloop(). This function is where Tkinter monitors
the widgets for event triggers such as clicking on a
button. No other code can execute after mainloop().

In this lesson some of the widgets will be used.
Others can be found online.

Check out this site for more widgets.

https://www.dummies.com/programming/python/
using-tkinter-widgets-in-python/

9

TK Library

Tk is a library that allows you
to create a graphical user
interface. It includes many
different widgets such as
buttons, menus, text entry,
lists and so on. It also
provides a canvas widget that
allows for rendering graphics.

The code to the right creates
a program with two buttons
and a canvas to render
graphics. When any of the
buttons are pressed, a
corresponding function is
called.

Two rectangles will be
created and rendered in the
canvas area. When you click
on a button, the color of the
corresponding rectangle will
change color.

At the top, the Tk library also
called tkinter is imported. The
way it is imported allows the
functions to be called more
easily.

top = Tk() creates the
window for the GUI. The
variable top relates to the
window created. Multiple
windows can be created and
each will need their own
name.

Next, two variables are
declared to indicate the color
state of the rectangles.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(rrect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(grect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

10

TK Library

Next, the canvas widget is
created with a black
background, with 800 pixels
in the X direction and 400
pixels in the Y direction. The
first argument specifies the
window the canvas is to be
placed.

Skip the two functions for
now.

Two rectangles are created
and given variable names
rrect and grect. Graphics
rendered are objects and can
be later modified. The
numbers in the arguments
are the top left corner X and
Y and the bottom right corner
X and Y locations. The fill
parameter sets the color of
the rectangle. Notice the c. in
front of the create function.
This makes the rectangles
get rendered in the canvas
assigned to variable c. You
can have more than one
canvas.

Two buttons are created. The
first argument is the window
to place the buttons. The
argument text sets the text in
the button. The argument
command tells what function
to execute when the button is
clicked.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(rrect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(grect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

11

TK Library

At the bottom of the code,
there are three lines that tell
the window manager to
display the widgets. The
pack() function will pack the
widgets in the window in a
vertical direction from top to
bottom in order of the code.

The last line starts the loop
that operates the widgets.
The button click will only be
detected when
top.mainloop() is executed.
The program stops when you
close the window.

Nothing executes after
mainloop(). This function
manages the widgets and
calls the related functions
when the widgets are
activated. This is a type of
event based programming
where actions occur when
events are detected.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(rrect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(grect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

12

TK Library

Functions in python are
declared with the def
statement. The name of the
function and ends in colon. All
instructions for the function
must be indented as shown.

The statement global tells
python the variable used is
not localized but the same
one used in the main
program. Python will
automatically declare any
variables created or
referenced inside a function
as local. This means you can
use the same variable name
in the main part of the code
and in the function and they
will be completely
independent. The variable
related to Tk are global by
default.

The function checks the state
of the toggle_red or green to
determine the color of the
rectangle. If it is zero, the
color is set to red or green
and the toggle variable is
changed. This allows tracking
of the state of the rectangle
color. The functions are called
only when the button is
clicked.

The function c.itemconfig()
lets you change the state of
any graphic object you put
into the canvas. In this
example, the color of the
rectangle is changed.

Save the program and call it
buttons.py. It will be used
later.

from tkinter import *

top = Tk()

toggle_red = 0
toggle_green = 0

c = Canvas(top,bg='black',height=400,width=800)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 else:
 color = 'gray'
 toggle_red = 0
 c.itemconfig(rrect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 else:
 color = 'gray'
 toggle_green = 0
 c.itemconfig(grect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack()
gb.pack()
top.mainloop()

13

Tk Canvas

In this example, you will use a
mouse to draw on the canvas.

There are two functions in this
program, one to paint and the other
to clear the screen.

top.title() fucntion Changes the title
of the window at the top.

The Canvas is created as before.
w.bind() is used to capture mouse
events when the mouse is over the
canvas. The first one is <B1-
Motion> which is used to call the
paint function. When the left button
is pressed and the mouse is moved,
the paint function will be called
repeatedly until motion stops and
the button is released. The
w.bind(“<Button-3>”, clear) is
used to detect the click of the right
button. The clear function is called
any time the right button is clicked
while the mouse is over the canvas.

A new widget in the code is the
Label. This is used to place a text
label in the window. It is placed
below the canvas due to the order
of the pack() functions.

The paint() function renders a small
red circle each time it is called at the
mouse location. The event passes
mouse information into the variable
event. The event variable is an
object that contains the X and Y
position of the mouse. Each circle
created is an object. At this time, it
is not assigned to an object name
as in the program on page 12.

w.delete(“all”) in the clear function
deletes all the objects created in the
canvas and clears the canvas.

from tkinter import *

canvas_width = 500
canvas_height = 300

def paint(event):
 color = "#ff0000"
 x1, y1 = (event.x - 1), (event.y - 1)
 x2, y2 = (event.x + 1), (event.y + 1)
 w.create_oval(x1, y1, x2, y2, fill = color)

def clear(event) :
 w.delete(“all”)

top = Tk()
top.title("Painting using Ovals")
w = Canvas(top,
 width=canvas_width,
 height=canvas_height,bg='black')
w.pack()
w.bind("<B1-Motion>", paint)
w.bind("<Button-3>",clear)

message = Label(top, text = "Press and Drag the mouse to draw")
message.pack()

mainloop()

The link below provides more information on how to link
events. Any object such as buttons and labels can have
events attached. Even the top object can have events.
Events are not limited to the mouse, keyboard inputs can
also be detected.

https://effbot.org/tkinterbook/tkinter-events-and-bindings.htm

14

Tk Canvas

In this example, two new modules
are introduced, threading and
time.

Threading is the ability to have
one or more functions execute
simultaneously. Since Tkinter is an
event based module, there are
times when code is needed to
execute after mainloop() is
executed. Threading will allow a
function to execute in parallel with
Tkinter mainloop().

The time module provides a
function to stop the program for a
specified time similar to the
delay() function in the Arduino
software.

from tkinter import *
import threading
import time

top = Tk()
c = Canvas(top,width=800,height=600,bg='black')

r = c.create_rectangle(300,10,500,20,fill='yellow')

def stretch():
 while 1:
 for s in range(20,500):
 c.coords(r,300,10,500,s)
 time.sleep(.01)

x = threading.Thread(target=stretch)
x.start()
c.pack()
mainloop()

In the code to this page, a canvas is created and a rectangle is created and positioned at the top
and center of the canvas. After the function stretch(), a thread is created named x. The argument
is the name of the function to execute in parallel. After creating the thread, it is started. The start
of the thread must occur after the rectangle is created otherwise the function will try accessing the
rectangle object when it doesn’t exist and an error will occur stopping the program.

After the thread is started, the canvas is placed in the window using the pack() function and the
mainloop() is called. When run, a window will open and the rectangle will be drawn and it will
grow in length downward.

Looking at the stretch() function, the function starts with while 1:. This creates an infinite loop
since we want the thread to keep running and not just once. The next line is a for loop. Variable s
is assigned a value starting at 20 and loops incrementing s by 1 until 500. The loop stops at 499
and exits at 500 so the rectangle never gets stretched to 500. range() is a function that will return
a value starting with the first argument and increment by one until reaching the last increment. If a
third argument is added, that will be the increment size. An example is:

for s in range(20,500,2):

This will increment s by two from 20 to 500.

In the for loop, c.coords(r,300,10,500,s) changes the coordinates of the r rectangle. The c in
c.coords() specifies canvas c. You can have more than one canvas in a program. They just need
different names.

time.sleep() stops the program for the specified number of seconds. Fractional seconds can be
specified. The example stops for 10 milliseconds.

Try the program and change the range() and add different steps. Adjust the sleep length.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

