
Sten-SLATE ESP Kit
Sending Serial Data

Stensat Group LLC, Copyright 2020

2

Sending Data

In this section, you will be shown how to send data to and from the SLATE to the a python
program. The python program will receive the data and plot it in real time. To plot data, the
matplotlib library will be used. This library work similar to Matlab plotting functions.

The first version will show how to collect data over the serial interface and plot it. The second
version will show how to collect data over WiFi and plot it.

3

Graphical Interface

In this section, you will learn how to
build a simple graphical user
interface to control two LEDs through
the USB port. Reuse the two LED
circuit from the BASIC Circuits
lesson. Two buttons will be created
to control the two LEDs. A new
prorgram will be created in
Processing to command the SLATE
and a new program for the SLATE
will be created to accept and process
the commands.

4

Graphical Interface

The Arduino program will look for a
single character command from the
serial interface over the USB port and
process it. It first checks if a command
character has been received. Once
received, it will read the character and
then use the switch() function to
determine which command was
received and turn the appropriate LED
on or off.

Upload this to the Experimenters
board. Save the program with the file
name RedGreenSerial.

Open the serial monitor. Type each
letter in the serial monitor and press
the Enter key. The program should
respond to the letter selected. Make
sure to use caps.

void setup() {
 Serial.begin(115200);
 pinMode(12,OUTPUT);
 pinMode(13,OUTPUT);
}

void loop() {
 if(Serial.available() > 0) {
 int a = Serial.read();
 switch(a) {
 case 'F' : digitalWrite(12,HIGH);
 break;
 case 'B' : digitalWrite(12,LOW);
 break;
 case 'L' : digitalWrite(13,HIGH);
 break;
 case 'R' : digitalWrite(13,LOW);
 }
 }
}

Arduino Program

5

Graphical Interface

We will reuse the
program buttons.py.

In order for the python
program to talk to the
SLATE board, a new
library needs to be
added.

Open a terminal or
powershell. Enter the
command:

pip3 install pyserial

You do need to be
connected to the
internet for the library to
be installed. Once
completed, you can
start writing the code.

The highlighted lines
are where the new
serial code will be
added.

The serial interface is
opened and configured
to operate at 115200
baud. Specify the COM
port used by the
Arduino software.

from tkinter import *
import serial

top = Tk()

toggle_red = 0
toggle_green = 0

s = serial.Serial("COM4",115200)

c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.write(b'F')
 else:
 color = 'gray'
 toggle_red = 0
 s.write(b'B')
 c.itemconfig(rrect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.write(b'L')
 else:
 color = 'gray'
 toggle_green = 0
 s.write(B'R')
 c.itemconfig(grect,fill=color)

rrect = c.create_rectangle(100,100,200,200,fill ='gray')
grect = c.create_rectangle(300,100,400,200,fill = 'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

Python Program

6

Graphical Interface

s.write() is the function
that writes the
command byte to the
SLATE. Notice the
character being sent is
preceded with the letter
b. This converts the
character which is
automatically in unicode
 to a byte character.

Python 3 handles all
strings as unicode
which is 16-bits long.
The serial interface
cannot support that so
the string needs to be
converted to an 8-bit
character.

Notice the last two
pack() functions. The
argument added will
make the two buttons
be positioned at the
same level with the
RED button the left and
the GREEN button on
the right.

Save the program as
button_serial.py.

Load and run the
SLATE program. Then
start the python
program. Click on each
button multiple times to
see SLATE react.

from tkinter import *
import serial

top = Tk()

toggle_red = 0
toggle_green = 0

s = serial.Serial("COM4",115200)

c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.write(b'F')
 else:
 color = 'gray'
 toggle_red = 0
 s.write(b'B')
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.write(b'L')
 else:
 color = 'gray'
 toggle_green = 0
 s.write(b'R')
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

Python Program

7

Sending Data

The IMU program from earlier will be
used for this section. The IMU program
generated orientation in degrees for the
three axis.

Reconnect the IMU as shown.

8

Sending Data

The program from the IMU section will be
reused as is. The code is shown to the
right. The only change in the code is
changing the delay to 10 milliseconds
instead of 100 ms at the end of the
program. The python program can handle
higher data rates.

For python, a new library needs to be
added. Open a terminal or powershell
and execute the programs below.

pip3 install matplotlib

For more information on matplotlib, go to
https://matplotlib.org/

Arduino Program

#include <MPU6050_tockn.h>
#include <Wire.h>

MPU6050 mpu6050(Wire);
long timer = 0;
char buf[64];

void setup() {
 Serial.begin(115200);
 Wire.begin(4,5);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

void loop() {
 mpu6050.update();
 Serial.print(mpu6050.getAngleX());
 Serial.print(“,“);
 Serial.print(mpu6050.getAngleY());
 Serial.print(“,“);
 Serial.println(mpu6050.getAngleZ());
 delay(10);
}

https://matplotlib.org/

9

Sending Data

This python program will receive data from
the serial interface and plot the X,Y,Z data
from the IMU as the data becomes
available.

Three libraries are imported. First is the
matplotlib library. Notice the as plt. This
renames the library to plt so there is less
typing. The second matplotlib library is to
support real time updates of the plots.

Line 5 creates a figure. This will be
window that contains the plot. Line 6 adds
a plot to the figure. There is only one plot.

Line 8 sets the number of data points to
be plotted. Line 9 declares a variable to
hold the Y scale of the plot. The IMU is
operating at 2 G range.

Line 11 fills in the x-axis values from 0 to
199. Line 12, 13, 14 fill arrays with zero of
length 200. Each of the arrays will hold
the IMU X, Y, Z values.

Line 15 sets the Y scale for the plot using
the variable value.

Line 16 opens the serial port.

Line 17 declares a line plot for the X
value. Line 18 does the same for the Y
value and line 19 does the same for the X
value. Each data plot will be plotted in the
one plot in the figure. The name of the plot
is ax.

Lines 20 to 22 set up the plot labels. Line
23 makes the data legend visible.

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('IMU')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()
24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8',’ingore’)
28 c = b.split(',')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

Python Program

10

Sending Data

Lines 25 through 41 are for the function
animate. This function is called repeatedly
to update the plot. Variables i,xa,ya,za are
passed to the function. variable i is
automatically passed and provides a
count update. It is not used.

Line 26 reads data from the serial
interface. If data is not available, the
program halts until it becomes available.
The received data is a byte array stored in
variable a.

Line 27 converts the byte array into a
string which uses unicode. Python 3
works with strings so the byte array needs
to be converted. The ‘ignore’ argument
tells the function to not throw an error and
stop the program if it cannot properly
convert the byte array. This can happen
when the program starts while the SLATE
is sending data and the byte array is not
received properly the first time. The issue
only happens at start up.

https://en.wikipedia.org/wiki/UTF-8

Line 28 splits the received data into
individual X, Y, Z values. The data is
separated by a space. the split() function
argument is the character that is used to
separate the values.

Line 29 verifies there are three values.
Some times the program will start reading
the serial interface in the middle of data
being sent and not all the data is received.
This makes sure all three values have
been received so the program will not
crash.

Lines 30 to 32 add the data to the arrays.
Since the split values are still strings, the
strings need to be converted to floating
point values.

Lines 33 to 35, trim the arrays back to 200
values removing the oldest value.

Python Program1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('IMU')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()
24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8',’ignore’)
28 c = b.split(',')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

https://en.wikipedia.org/wiki/UTF-8

11

Sending Data

Lines 36 to 38 update the plot data by
reloading the linex,liney,linez with the
updated arrays.

The updated arrays are returned in line
39.

Line 40 and 41 handle the situation where
data was not in the proper format. The
non updated linex,liney, linez are
returned.

Line 42 sets up the real time plotting. The
first argument identifies the figure to be
updated. The second argument is the
function that does update the data. The
third argument specifies the data arrays
the animate function will use. The interval
argument specifies how fast to animate
the plot. The blit=True accelerates the
plotting so it can keep up with the data.

interval is set to 1 millisecond. This is
faster than the data being generated. This
is done so that the program does not lag
behind the data. The readline() function
will control the speed of the plotting based
on the rate the data is received.

Line 46 makes the figure with the plot
visible.

Load the SLATE with the IMU program
and let it start. Start the python program. It
may take several seconds to start. This is
based on how fast the laptop is and how
long it takes to load the modules and start
executing.

Python Program1 import matplotlib.pyplot as plt
2 import matplotlib.animation as animation
3 import serial
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = serial.Serial('COM5',115200)
17 line, = ax.plot(xs, xa,label='X')
18 line2, = ax.plot(xs,ya,label='Y')
19 line3, = ax.plot(xs,za,label='Z')
20 plt.title('IMU')
21 plt.xlabel('Samples')
22 plt.ylabel('Degrees')
23 ax.legend()
24
25 def animate(i, xa,ya,za):
26 a = s.readline()
27 b = a.decode('utf-8',’ignore’)
28 c = b.split(',')
29 if len(c) == 3:
30 xa.append(float(c[0]))
31 ya.append(float(c[1]))
32 za.append(float(c[2]))
33 xa = xa[-x_len:]
34 ya = ya[-x_len:]
35 za = za[-x_len:]
36 line.set_ydata(xa)
37 line2.set_ydata(ya)
38 line3.set_ydata(za)
39 return line,line2,line3,
40 else:
41 return line,line2,line3,
42 ani = animation.FuncAnimation(fig,animate,
43 fargs=(xa,ya,za,),
44 interval=1,
45 blit=True)
46 plt.show() # show the figure

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

