
Sten-SLATE ESP Kit
WiFi

Stensat Group LLC, Copyright 2020

2

WiFi

The WiFi integrated in the processor
provides a wireless way to communicate
with the processor. The processor will be
configured as an access point. This
means it becomes a local network where
your laptop connects. It is also possible
to have a tablet connect to the
processor. In this lesson, you will learn
how to control digital pins. This will
require you to write code on the laptop.

This drawing shows how everything is
interconnected. The control program
runs on the laptop. The laptop WiFi
connects to the processor board WiFi.
The control program sends commands
over the WiFi to the processor board.
The Arduino program interprets the
commands and executes them.

Control
Program

Arduino
Program

wireless link

3

What is WiFi

WiFi is a local area wireless computer network. It is also known as wireless local area network.
WiFI is a standard for allowing computers to interact with each other using radio signals. A
wireless access point is a device that connects a wireless network to a wired network. It can
also provide a local isolated network not connected to the internet or other wired network. Access
points usually have a network router and can provide network addresses or IP addresses to any
device that connects.

● SSID – is a unique identifier for the WiFi network. It can have up to 32 characters and is
case sensitive. This allows multiple WiFi access points in the same area without interfering
with each other.

● IP Address – is the internet protocol address assigned to each device on the network.
There are two standards, IP-4 and IP-6. IP-4 is used here. The address consists of four sets
of numbers separated by a decimal point. Each number has a range of 0 to 255. Example
192.168.1.10.

● DHCP – is Dynamic Host Configuration Protocol. This protocol allows a WiFi router to
assign an IP address to any device that connects to the WiFi network. This is done
automatically.

● TCP – is Transmission Control Protocol. This is one of the main network protocols used by
any device on any WiFi network or the internet. The protocol enables two devices to
establish a connection to each other and exchange data. The protocol guarantees delivery
of data and that the data is delivered in the same order sent. The sender sends a data
packet, when the receivers gets the packet, it sends an acknowledgment If the receiver
doesn’t receive the packet, the sender will send again after a time out period.

● UDP – is user datagram Protocol. This protocol is a stateless protocol. No connection
needs to be made and packets received are not acknowledged. The sender just sends a
packet to an IP address and port. There is no guaranteere the receiver actually received
any packets. Data packets can be sent much more quickly because there is no
handshaking.

There are two parts to the WIFI operation. Configuration which sets up the module to operate
properly. Data operation where the module receives data and can send data. The WIFI module will
be configured to operate as an access point. This allows another computer to connect to the
module and communicate with the module. More than one WIFI access point can be in the same
area and operate independent of each other as long as their SSID are different. In this lesson, the
WIFI module will be configured as an access point and allow TCP connections.

4

Remote LED Control

In this example, you will control the red
and green LEDs using TCP packets.
This example will require a program on
the processor board and on the laptop.
The processor board program will wait
for the laptop to connect via WiFi
connection and interpret the
commands. The laptop program will
detect certain keys on the keyboard
being pressed and send commands to
the processor board.

NOTE:

Some things to remember when
uploading code to the SLATE. Each
time code is uploaded, any network
operation is stopped. After uploading
code, you will need to reconnect your
laptop WiFi to the SLATE access point.
Windows may show the laptop is still
connected but it really is not.
Disconnect and connect again. Any
time you upload code to the SLATE,
the access point software stops
functioning and Windows will have
stale data about the connection.

If you use the menu Include Library to
add the WiFi to the code, a whole
bunch of include statements will be
added. Remove all the ones except
what is shown in the code in this
document. Some of those include files
can cause issues with compiling and
generate code that doesn’t execute
properly.

5

WiFi Configuration

First thing to do is include the ESP8266WiFi
library by adding the include statement to the
top of the program. Some items need to be
declared. A WiFiClient object needs to be
created. This allows the code to get commands
from the laptop and send telemetry.
WiFiServer object needs to be created so the
laptop can connect and and send data to the
Experimenters Kit. This allows the kit to
receive connections. When creating the
WiFiServer object, the network port is
selected.

A character array is created for holding the
commands sent by the laptop. For now, the
first character in the array will be the
command.

WiFi.mode() is used to configure the operating
mode of the WiFi interface. WIFI_AP
parameter configures the WiFi interface to
operate as an access point where it will have a
default address of 192.168.4.1 and assign any
device connecting to it a different address.

Last operation is to set up the WiFi as an
access point. WiFi.softAP() will set up the
Experimenters Kit as an access point with the
SSID specified. If a password is desired then
the format is:
WiFi.softAP(“ssid”,”password”);

After the access point is configured, the server
is started. This implements the ability for
clients to connect to the kit.

#include <ESP8266WiFi.h>

WiFiClient client;
WiFiServer server(80);

unsigned char cmd[6];

void setup()
{
 Serial.begin(115200);
 pinMode(14,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 server.begin();
}

void loop()
{
}

Add the loop() function to the program if
it isn't already included. Upload the
program and let it run. On your
computer, look up the available wireless
networks and see if the one you named
appears on the list. It may take a little
while since the laptop OS checks for
available networks at some interval of
seconds. If it appears, try connecting. If
you include a password, you should be
prompted to enter a password.

Arduino Program

6

Command Processing

A unique byte value is required to differentiate the LEDs. The table below shows the
commands for controlling the LEDs. A single letter will represent each action.

In the loop() function, two things need to be checked. Has a client connected to the
processor? Has a command been received? One big rule about writing code. No infinite loops
in the loop() function. This will cause the processor to crash. It needs to enter and exit the
loop function repeatedly or execute a delay() function.

The first thing that is checked is if a client is connected to the processor. (2) The object client
is assigned to a client that has connected. If no client has connected then the client object is
empty or null. (3) The if() statement checks if the client object is null or not. The result of the
if() statement is always true if the variable is not empty or null. If a client has connected, (4)
the statement Connected will be displayed on the serial monitor.

(5) A while() loop is created to process all commands while the client is connected. As long
as the result of client.connected() is true, the code inside the while() loop will be executed.

 1 void loop() {
 2 client = server.available();
 3 if(client) {
 4 Serial.println(“Connected”);
 5 while(client.connected()) {
 6 while(!client.available()) {
 7 if(!client.connected()) break;
 8 delay(1);
 9 }
10 char a = client.read();
11 switch(a) {
12 case 'F' : digitalWrite(14,HIGH);
13 break;
14 case 'B' : digitalWrite(14,LOW);
15 break;
16 case 'L' : digitalWrite(16,HIGH);
17 break;
18 case 'R' : digitalWrite(16,LOW);
19 break;
20 }
21 }
22 }
23 }

Action Command
Red LED On F
Red LED Off B
Green LED On L
Green LED Off S

Arduino Program

7

Command Processing

Line (6) is where the code is looking for any commands sent to the Experimenters Kit. It
works the same as Serial.available(). The while() loop here executes as long as there are no
commands being sent. It does two things. First, it checks to make sure a client is still
connected otherwise the while() loop will get stuck forever. Second, a delay() function is
executed. This allows the processor to multi-task and handle WiFi operations. If the client
disconnects, the break causes the code to exit the the while() loop.

After a command has been received, the code exits the while loop and then the command
byte is read. (10) Reading a byte from the client is the same as reading a byte from the serial
interface. (11 – 20) The command is then checked in the switch() statement. The switch
statement allows a variable to be compared against a list of values. The values are listed
after the case statement. If the value matches, the code after the case statement is
executed.

A break statement is needed to exit the switch statement otherwise all code after the
matched case will be executed.

 1 void loop() {
 2 client = server.available();
 3 if(client) {
 4 Serial.println(“Connected”);
 5 while(client.connected()) {
 6 while(!client.available()) {
 7 if(!client.connected()) break;
 8 delay(1);
 9 }
10 char a = client.read();
11 switch(a) {
12 case 'F' : digitalWrite(14,HIGH);
13 break;
14 case 'B' : digitalWrite(14,LOW);
15 break;
16 case 'L' : digitalWrite(16,HIGH);
17 break;
18 case 'R' : digitalWrite(16,LOW);
19 break;
20 }
21 }
22 }
23 }

Action Command
Red LED On F
Red LED Off B
Green LED On L
Green LED Off R

Arduino Program

8

Control Software

Open button_serial.py
and save it to a new
name such as
button_tcp.py.

Replace the import
serial with import
socket. This loads the
network socket library.

Replace the line that
opens the serial port
with the
socket.socket()
function. This function
sets of the network
connection to be TCP.
SOCK_STREAM is the
parameter that specifies
TCP protocol.

Next, establish the
connection with
s.connect(). Notice the
IP address and port are
a tuplet type value.

Replace the s.write()
functions with
s.sendall().

Load the SLATE board
with the software and let
is start up. Connect to
the SLATE access point
then run the python
program.

Python Program

from tkinter import *
import socket

top = Tk()

toggle_red = 0
toggle_green = 0

s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((‘192.168.4.1’,80))
c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.sendall(b'F')
 else:
 color = 'gray'
 toggle_red = 0
 s.sendall(b'B')
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.sendall(b'L')
 else:
 color = 'gray'
 toggle_green = 0
 s.sendall(B'R')
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

9

UDP Connection

To use the UDP protocol, modify the SLATE
program as shown to the right. Another
include file is required for UDP. The client
has been replaced with a udp object. The
cmd array has been increased in size to
support possible large packets.

In the setup, the only change is replacing
server with udp and specifying the port
number.

In the loop, the program looks for a UDP
packet. If there is one, the size is returned
or zero for no packet. The if(packetsize) is
true when packetsize is not zero. The
packet is read and then the first byte of the
array is extracted. The rest of the code is
not changed.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>

WiFiUDP udp;

unsigned char cmd[256];

void setup()
{
 Serial.begin(115200);
 pinMode(14,OUTPUT);
 pinMode(16,OUTPUT);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“nameofboard”);
 udp.begin(80);
}

void loop()
{
 int packetsize = udp.parsePacket();
 if(packetsize) {
 udp.read(cmd,256);
 int a = cmd[0];
 switch(a) {
 case 'F' :
 digitalWrite(14,HIGH);

 break;
case 'B' :

 digitalWrite(14,LOW);
 break;
case 'L' :

 digitalWrite(16,HIGH);
 break;
case 'R' :

 digitalWrite(16,LOW);
 break;

 }
 }
}

Arduino Program

10

UDP Connection

To use UDP, replace
SOCK_STREAM with
SOCK_DGRAM to
specify the UDP protocol.

Delete s.connect() since
UDP protocol does not
require connecting to a
server.

Add a variable address
and assign it the tuple
with the IP address and
port number.

Replace the s.sendall()
functions with
s.sendto(). The
s.sendto() function
requires the destination
address.

Load the SLATE board
with the software and let
is start up. Connect to
the SLATE access point
then run the python
program. The program
should operate the same
way just using a different
protocol.

Python Programfrom tkinter import *
import socket

top = Tk()

toggle_red = 0
toggle_green = 0

s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
address = (‘192.168.4.1’,80)
c = Canvas(top,bg='black',height=400,width=500)

def toggle_red_rect():
 global toggle_red
 if toggle_red == 0:
 color = 'red'
 toggle_red = 1
 s.sendto(b'F',address)
 else:
 color = 'gray'
 toggle_red = 0
 s.sendto(b'B',address)
 c.itemconfig(red_rect,fill = color)

def toggle_green_rect():
 global toggle_green
 if toggle_green == 0:
 color = 'green'
 toggle_green = 1
 s.sendto(b'L',address)
 else:
 color = 'gray'
 toggle_green = 0
 s.sendto(B'R',address)
 c.itemconfig(green_rect,fill=color)

red_rect = c.create_rectangle(100,100,200,200,fill ='gray')
green_rect = c.create_rectangle(300,100,400,200,fill =
'gray')
rb = Button(top,text='RED',command=toggle_red_rect)
gb = Button(top,text='GREEN',command=toggle_green_rect)

c.pack()
rb.pack(side=LEFT)
gb.pack(side=RIGHT)
top.mainloop()

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

