
Sten-SLATE ESP Kit
Sending Data Over WiFi

Stensat Group LLC, Copyright 2020

2

Sending Data over WiFi

In this section, the IMU data will be sent to the python program over WiFi using a UDP network
connection. Remember a UDP connection does not require the SLATE to make a connection to a
computer. In this example, the python program will operate as a server and listen for UDP packets.

3

Arduino Code

The setup code will be similar to the original
accelerometer code except with the addition
of configuring the WiFi.

The ESP8266WiFi.h include file is added to
the top of the code. The WiFiUdp.h include
file is also added.

The udp object is declared to send and
receive UDP packets.

The variable send_data is declared and set
to zero. This will be used to indicate when a
packet is received from the python program.

The remote variable is declared as an
IPAddress type variable. This will be used to
store the IP address of the computer
running the python program.

The variable buf will hold the data to be
sent to the python program as a character
array.

In the setup() function, the I2C interface is
configured as before and the WiFi if
configured. Last, the accelerometer is
configured as before.

A UDP port is declared so the SLATE can
get a packet from the python program and
acquire the IP address to send data.

#include <ESP8266WiFi.h>
#include <WiFiUdp.h>
#include <MPU6050_tockn.h>
#include <Wire.h>

WiFiUDP udp;

int send_data = 0;
IPAddress remote;
char buf[32];

MPU6050 mpu6050(Wire);

void setup() {
 Wire.begin(4,5);
 Serial.begin(115200);
 WiFi.mode(WIFI_AP);
 WiFi.softAP(“SSID name”);
 udp.begin(10000);
 mpu6050.begin(ACCEL_2G,GYRO_500);
 mpu6050.calcGyroOffsets(true);
}

Arduino Program

4

Arduino Code

In the loop() function, the udp port
is checked for any UDP packet
from the python program if a packet
has not been received before. The
contents do not matter for this
program. The purpose is to acquire
the IP address of the computer the
python program is running on.
When a packet is received, the
send_data variable is set to 1 and
the IP address is captured.

When the program has captured
the IP address and send_data is
set to 1, the program will then get
the accelerometer data and send it
to the python program.

The snprintf() function format the
data into a character array that can
be read by a person. The values
are converted into an ASCII string.
The first parameter is the character
array to store the string. The
second parameter is the size of the
character array. The third
parameter specifies the formatting
of the string. After that, the rest of
the parameters are the variables
that are used to put values in the
string.

To send a UDP packet,
udp.beginPacket() is required to
specify the IP address and network
port. udp.print() fills the packet
with the contents. Multiple
udp.print() statements are allowed.
The packet is sent when
udp.endPacket() is executed.

void loop() {
 int reg[6];
 int i;
 if(send_data == 0) {
 int ps = udp.parsePacket();
 if(ps > 0) {
 send_data = 1;
 remote = udp.remoteIP();
 }
 }
 if(send_data == 1) {
 mpu6050.update();
 float gx = mpu6050.getAngleX();
 float gy = mpu6050.getAngleY();
 float gz = mpu6050.getAngleZ();
 snprintf(buf,32,”%f,%f,%f\n”,gx,gy,gz);
 udp.beginPacket(remote,10000);
 udp.print(buf);
 udp.endPacket();
 delay(10);
 }
}

Arduino Program

5

Python Code

The same plotting python
program will be modified to
use the network socket. The
UDP protocol will be used.

Line 3 is modified to import the
socket library instead of the
serial library.

Line 16 sets up the type of
network connection to be UDP.
Line 17 establishes a
connection to the SLATE. This
is done to get the local IP of
the device making the
connection. There can be more
than one network device. Line
18 gets the local IP address of
the host computer that the
python program is hosted. Line
19 closes the network
connection.

Line 20 sets up the UDP
network type again. Line 21
tells the program to start
listening to the network port on
the local IP address.

Line 22 sends a packet to the
SLATE. This allows the SLATE
to get the IP address of the
host computer running the
python program.

1 import matplotlib.pyplot as plt
2 import matplotlib.animation as anim
3 import socket
4
5 fig = plt.figure()
6 ax = fig.add_subplot(1, 1, 1)
7
8 x_len = 200
9 y_range = [-200, 200]
10
11 xs = list(range(0, 200))
12 xa = [0] * x_len
13 ya = [0] * x_len
14 za = [0] * x_len
15 ax.set_ylim(y_range)
16 s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
17 s.connect((‘192.168.4.1’,80))
18 localip = s.getsockname()[0]
19 s.close()
20 s = socket.socket(socket.AF_INET,socket.SOCK_DGRAM)
21 s.bind((localip,10000))
22 s.sendto(b‘start’,(‘192.168.4.1’,10000))

Python Program

6

Python Code

Lines 23, 24 and 25 create plots for
each axis of the IMU. The object ax
refers to the one subplot. Any plot
functions to the same object gets plotted
on the same subplot.

Lines 26 to 28 set up the labels. Line 29
makes the legend visible.

Lines 31 through 47 are the same as
before. The only change is line 32. It is
changed to read a UDP packet that has
been received. If none has been
received, the program waits here. Notice
the function returns two values. The first
is the packet contents into variable a.
The second is the IP address and port
from the SLATE.

The rest of the program is not changed.

23 linex, = ax.plot(xs, xa,label='X')
24 liney, = ax.plot(xs,ya,label='Y')
25 linez, = ax.plot(xs,za,label='Z')
26 plt.title('MPU6050')
27 plt.xlabel('Samples')
28 plt.ylabel('Degrees')
29 ax.legend()
30
31 def animate(i, xa,ya,za):
32 a,d = s.recvfrom(256)
33 b = a.decode('utf-8')
34 c = b.split(',')
35 if len(c) == 3:
36 xa.append(float(c[0]))
37 ya.append(float(c[1]))
38 za.append(float(c[2]))
39 xa = xa[-x_len:]
40 ya = ya[-x_len:]
41 za = za[-x_len:]
42 linex.set_ydata(xa)
43 liney.set_ydata(ya)
44 linez.set_ydata(za)
45 return linex,liney,linez,
46 else:
47 return linex,liney,linez,
48 ani = anim.FuncAnimation(fig,animate,
49 fargs=(xa,ya,za,),
50 interval=1,
51 blit=True)
52 plt.show() # show the figure

Python Program

7

WiFi with Matlab

Matlab provides functions for
interacting with devices. The interface
used in the following example is the
USB interface which appears to be a
COM port. It is the same COM port
used for uploading programs.

The Arduino code from the previous
lesson will be used. Reload the code
with the WiFi accelerometer program
if necessary. You will need to change
the delay() at the bottom of the
program. Set it to 100ms. This is
because Matlab is a bit slow and the
high data rate will overload Matlab.

Accelerometer Code

loop() {
 int reg[6];
 int i;
 client = server.available();
 if(client) {
 Serial.println(“Connected”);
 while(client.connected()) {

 Wire.beginTransmission(0x1c);
 Wire.write(0x01);
 Wire.endTransmission(false);
 while(Wire.available() < 6) {
 delay(1);
 }
 for(i=0;i<6;i++)
 reg[i] = Wire.read();
 short x = (reg[0] << 8) | reg[1];
 short y = (reg[2] << 8) | reg[3];
 short z = (reg[4] << 8) | reg[5];
 x = x >> 2;
 y = y >> 2;
 z = z >> 2;
 float gx = x / 4095.0;

 float gy = y / 4095.0;
 float gz = z / 4095.0;
 client.print(gx,2);
 client.print(“,“);
 client.print(gy,2);
 client.print(“,“);
 client.println(gz,2);
 delay(100);
 }
 }
}

8

WiFi with Matlab

First, three arrays will be created to hold the data for each axis of the accelerometer. A figure will be
created to display three plots. Next, variable t will be created and be the network object. A tcp-ip
connection is being created. The first argument is the Experimenters Kit IP address. The second
argument is the port number. The third argument indicates a network connection and the last
argument specifies the program operates as a client. fopen(t) connects to the Experimenters Kit.

An infinite loop is created with the while 1. A for loop is used to collect 50 data samples and fill the
arrays.

xa = zeros(50,1);
ya = zeros(50,1);
za = zeros(50,1);

figure;
t = tcpip('192.168.4.1',80,'NetworkRole','client');
fopen(t);
while 1
 for b=1:50
 p = fscanf(t,'%e %e %e');
 xa(b) = p(1);
 ya(b) = p(2);
 za(b) = p(3);
 end
 subplot(3,1,1);
 plot(xa);
 title('Accel X');
 axis([1,50,-8200,8200]);
 subplot(3,1,2);
 plot(ya);
 title('Accel Y');
 axis([1,50,-8200,8200]);
 subplot(3,1,3);
 plot(za);
 title('Accel Z');
 axis([1,50,-8200,8200]);
 drawnow;
end

9

WiFi with Matlab

After the 50 samples are collected, the data is plotted in three separate plots. drawnow is executed
to update the display.

To stop the Matlab code, click on the Pause button. Then click on the Quit Debugging button. In the
command window enter fclose(t) and press enter. This properly stops the code and closes the
network connection. If this is not done, the program cannot be rerun. If an error indicating the
network connection is not available, restart Matlab.

xa = zeros(50,1);
ya = zeros(50,1);
za = zeros(50,1);

figure;
t = tcpip('192.168.4.1',80,'NetworkRole','client');
fopen(t);
while 1
 for b=1:50
 p = fscanf(t,'%e %e %e');
 xa(b) = p(1);
 ya(b) = p(2);
 za(b) = p(3);
 end
 subplot(3,1,1);
 plot(xa);
 title('Accel X');
 axis([1,50,-8200,8200]);
 subplot(3,1,2);
 plot(ya);
 title('Accel Y');
 axis([1,50,-8200,8200]);
 subplot(3,1,3);
 plot(za);
 title('Accel Z');
 axis([1,50,-8200,8200]);
 drawnow;
end

10

End

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

